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Abstract 

The objective of this study is to describe a parsimonious forecasting model for the hourly electricity load in the 

area covered by an electric utility located in the Midwest of the United States that performs well in out-of-sample 

forecast evaluation. This study proposes using an autoregressive moving average model with exogenous weather 

variables (ARMAX) to forecast short-term electricity load using hourly load data from Commonwealth Edison 

Company (ComEd). The proposed model treats each hour’s load separately as an individual daily time series. 

This approach avoids modeling the complicated intraday pattern (load profile) displayed by the load, which 

varies through the week as well as through the seasons. To date, no published study to our knowledge has taken 

an ARMAX modeling approach to forecast short-term electricity load in ComEd’s territory. The importance of 

accurate short-term forecasting is greatest for utilities operating in a restructured environment, such as ComEd 

in Illinois. 
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I. INTRODUCTION 

Electricity load forecasting has been an important risk management and planning tool for electric 

utilities ever since the conception of forecasting. Load forecasting is necessary for economic generation 

of power. Load serving entities use load forecasts for system security, to schedule generator 

maintenance, to make long-term investments in generation, and to plan the most cost-effective merit 

order dispatch. Over the last decade, as electricity markets have deregulated, the importance of load 

forecast accuracy has become even more evident. Without an optimal load forecast, utilities are subject 

to the risk of over- or under- purchasing in the day-ahead market. While an entity can buy or sell power 

in the real time market to correct for forecast inaccuracy, it comes at the expense of higher real time 

prices. A one percent reduction in the average load forecast error has the possibility of saving hundreds 

of millions of dollars for a utility. Thus, the financial costs of forecast errors are so high that much 

research is focused on reducing the error even by a fraction of a percentage point (Weron and Misiorek 

2004). Today, load forecasting has become an integral part of planning for more than just utilities; 

regional transmission organizations (RTO), energy suppliers, financial institutions, and participants in 

the generation, transmission, and distribution of electricity have a vested interest in load forecast 

accuracy. 

As the value of accurate load forecasting has grown throughout the years, the literature has expanded 

to consider a wide array of empirical and analytical tools including, adaptive forecasting techniques 

(Gupta 1985), neural network models (Hippert et al. 2001), various types of Box-Jenkins time-series 

approaches (Box and Jenkins 1970), Seasonal Integrated Autoregressive Moving Average models 

(SARIMA) (Soares and Souza 2006), Two-Level Seasonal Autoregressive models (TLSAR) (Soares and 

Medeiros 2005, 2008), Autoregressive Fractional Integration Moving Average models (ARFIMA) 

(Soares and Souza 2006), Dummy-Adjusted Seasonal Integrated Autoregressive Moving Average  
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models (DASARIMA) (Soares and Medeiros 2005, 2008), Smooth Transition Periodic Autoregressive 

models (STPAR) (Amaral et al. 2008), cointegration analysis (Chen 1997), and many other techniques
1
. 

Generally speaking, electricity load forecasts can be classified in terms of the duration of the planning 

horizon: short-term load forecasting (STLF) (one hour to one week), medium-term load forecasting 

(MTLF) (one week to one year) and long-term load forecasting (LTLF) (longer than a year) (Feinberg 

and Genethliou 2005).   

The objective of this study is to describe a parsimonious forecasting model for the hourly electricity 

load in the area covered by an electric utility located in the Midwest of the United States that performs 

well in out-of-sample forecast evaluation. This study proposes using an autoregressive moving average 

model with exogenous weather variables (ARMAX) to forecast short-term electricity load (24-hours 

ahead) using hourly load data from Commonwealth Edison Company (ComEd)
2
. The proposed model 

treats each hour’s load separately as an individual daily time series. This approach avoids modeling the 

complicated intraday pattern (load profile) displayed by the load, which varies through the week as well 

as through the seasons. To date, no published study to our knowledge has taken an ARMAX modeling 

approach to forecast short-term electricity load in ComEd’s territory. Our findings indicate that a multi-

equation regression approach to forecasting short-term electricity load performs best when weekdays are 

modeled separately and when a separate model is fitted for the night- versus the day-time hours
3
.  

The importance of accurate short-term forecasting is greatest for utilities operating in a restructured 

environment, such as ComEd in Illinois (Wang 2004). Illinois’ own restructuring experience has made 

                                                      
1
 See Bunn and Farmer (1985b), Alfares and Nazeeruddin (2002), and Weron (2006) for a good review of load-forecasting 

methods.  
2
 ComEd is a utility that provides service to approximately 3.8 million customers across Northern Illinois, or 70 percent of 

the state’s population. ComEd’s service territory borders Iroquois County, Illinois to the south (roughly Interstate 80), the 

Wisconsin border to the north, the Iowa border to the west and the Indiana border to the east. 
3
 Although we do not investigate the following in this study, we believe that performance is likely to be enhanced if a model 

is fitted for each of the twenty-four hours separately, rather than only two hours (one night and one day) and applied to the 

rest of the hours as is done in this study.  
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load forecasting a critical component of power procurement
4
. In 2007, the state of Illinois passed the 

Illinois Power Agency Act, which created the Illinois Power Agency (IPA), among other things. The 

IPA procures electricity on the behalf of ComEd and relies on load forecasts provided by the utility to 

devise its procurement plan.  

The organization of the paper is as follows. The next section reviews the electricity load forecasting 

literature. Section III explains the theoretical model. Section IV describes the data used in this study. 

Section V discusses the econometric method utilized to fit the load demand as well as the forecasting 

results. Section VI offers some concluding remarks.  

 

II. LITERATURE REVIEW 

The literature on load forecasting extends as far back as the mid-1960s (Heinemann et al. 1966; Hahn 

et al. 2009). While Kalman filter and state space methods dominated the literature early on, artificial and 

computational intelligence methods and econometric techniques have largely dominated literature that is 

more recent. The choice of the appropriate technique for load forecasting depends largely upon the 

forecast horizon. Short-term load forecasts (STLF), which forecast one hour to one week ahead, have 

become one of the most important load forecasts performed by utilities (Hahn et al. 2009; Feinberg and 

Genethliou 2005). Medium-term load forecasts (MTLF) typically range from one week to one year 

ahead; whereas, forecasts that aim to predict load beyond one year are considered long-term load 

forecasts (LTLF). While long- and medium-term forecasts are useful for guiding planning and 

operational decisions, they have little practical use estimating day-to-day load flows, which are vital to 

utility short-term planning. Forecasting peak electricity loads has also been a topic among much of the 

load forecasting literature (e.g., Engle et al. 1992). Interestingly, cointegration analysis has been used to 

                                                      
4
 With respect to procurement, long-term load forecasting (LTLF) is of interest.  
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forecast long-term peak electricity load (Chen 1997). Recall the stated objective of this paper is to 

forecast short-term electricity load; accordingly, only those models and studies that perform short-term 

forecasts are considered. Within the short-term load forecasting literature, a number of models varying 

in the complexity of functional form and estimation techniques have been developed. Some of the most 

successful modeling techniques have utilized either classical time-series regression analysis (i.e., 

econometric techniques) or artificial and computational intelligence methods.  

 

A. CLASSICAL APPROACH (TIME SERIES AND REGRESSION) 

Time-series techniques have been extensively used in load forecasting for decades and are among the 

oldest methods applied in forecasting (Hahn et al. 2009; Bunn and Farmer 1985a, 1985b; Weron 2006; 

Kyriakides and Polycarpou 2007). Two overarching classes of time-series regression models have 

emerged to address the time-scale issues in different ways. Amaral et al. (2008) contend the two broad 

classes of conceptual models include: (1) single-equation models and (2) multi-equation (vector) 

models. This distinction between single-equation models and multi-equation (vector) models is 

important because we utilize the multi-equation approach in our estimation. The articles that utilize the 

multi-equation conceptual approach include Fiebig, Bartels, and Aigner (1991); Peirson and Henley 

(1994); Ramanathan et al. (1997); Cottet and Smith (2003); Soares and Medeiros (2005, 2008); and 

Soares and Souza (2006). Comparatively speaking, the single-equation approach has been relatively 

dominant in the literature; however, recent load forecasting efforts have largely gravitated toward the 

multi-equation approach. The multi-equation model described by Ramanathan et al. (1997) was actually 

the winner of an electricity load-forecasting competition, so we find the lack of multi-equation approach 

load-forecasting literature quite surprising
5
.  

                                                      
5
 To the best of our knowledge, only three multi-equation load-forecasting articles have been published since the Ramanathan 
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Irrespective of which approach is adopted, single equation or multi-equation, when constructing a 

time-series model there are four components that must be taken into consideration: trend, cyclicality, 

seasonality, and a random white noise error. Consequently, the time-series literature can be envisioned 

in terms of how it has addressed each time-series component. In general, accounting for both cyclicality 

and seasonality has been extensively covered in the literature whereas trend, while addressed, is 

typically not the focus of the analysis.  

1. Modeling Trend 

Within the literature, load data has occasionally been found nonstationary. Some, Darbellay and 

Slama (2000) for example, first difference the data to account for nonstationarity. Other studies, 

however, find that fitting a deterministic trend is more appropriate. Soares and Medeiros are highly 

critical of authors’ tendency to first difference without first testing for a unit root or even considering a 

linear trend (2008). Soares and Medeiros (2008) point out that when the trend is in fact deterministic, 

taking the first difference will introduce a non-invertible moving average component, which in turn, will 

cause serious estimation problems. Upon examining hourly load data for Rio de Janeiro, Soares and 

Medeiros (2008) find that the data display a positive linear trend. Using the Phillips-Perron unit root test, 

the authors find that inclusion of a linear trend is necessary to make the data stationary for all hourly 

series considered (Soares and Medeiros 2008). Similarly, Ramanathan et al. (1997) fit both a linear trend 

and the reciprocal of that for their multi-equation estimation of hourly load for the Puget Sound Power 

and Light Company for the period 1989 to 1990
6
.   

Alternatively, there are studies that find the load series to be stationary. Taylor et al. (2006) look at 

twenty weeks of hourly data and they find no evidence of a unit root, and thus no justification for first 

                                                                                                                                                                                        
et al. (1997) article was issued. However, we do not know whether utilities have adopted the winning multi-equation 

forecasting approach.  
6
 The model described by Ramanathan, Engle, Granger, Vahid-Arahi, and Brace (1997) was the winner of a load forecast 

competition.  
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differencing. Accordingly, it would appear that the existence of a trend may largely depend on both the 

length of the time period examined as well as location-specific factors
7
. 

2. Modeling Cyclicality 

 Autoregressive moving average models have been extensively applied in the load forecasting 

literature (Weron 2006; Taylor et al. 2006; Kyriakides and Polycarpou 2007; Feinberg and Genethliou 

2005; Pappas et al. 2008). Of those studies that perform short-term load forecasting, the most popular 

time-series techniques that have been adopted are some formulation of Autoregressive Moving Average 

(ARMA) or Autoregressive Moving Average with exogenous variables (ARMAX) models (Feinberg 

and Genethliou 2005). When choosing between applying a univariate (ARMA) or multivariate 

(ARMAX) time-series model, the time horizon and data availability give some indication as to which 

technique is feasible. Weron (2006) notes that while moving average (MA) models are not particularly 

useful (besides their filtering properties) in forecasting electricity load, the combination of the moving 

average process with an autoregressive model (an ARMA process) provides a very powerful load-

forecasting tool. Taylor et al. (2006) and Hahn et al. (2009) assert that univariate models are typically 

used for very short-term load forecasts, while Hahn et al. (2009) emphasize multivariate methods are 

typically applied to all time horizons.  

a. ARMA Models 

Amjady (2001) uses an ARIMA model to forecast load for four different types of days
8
, which 

simultaneously accounts for intraday seasonality. In total Amjady (2001) estimates 16 ARIMA models, 

one for each type of day, and a hot- and cold-days model within each day-type model. Using data from 

the Iranian national grid and an in-sample forecast period from 1996 to 1997, Amjady (2001) finds the 

Mean Absolute Percentage Errors (MAPEs) to range from 1.48% (Sunday to Wednesday, hot) to 1.99% 

                                                      
7
 High industrial sector growth over a period in a specific location may impact the stationarity of a load series. 

8
 Saturday, Sunday to Wednesday, Thursday and Friday, and holidays. 
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(public holidays, cold). Pappas et al. (2008) use daily load data as opposed to hourly loads from the 

Hellenic power market and after accounting for seasonality, they find that an ARMA(2,6) model 

successfully fits the data. 

Soares and Medeiros (2008) and Soares and Souza (2006) utilize the multi-equation approach and 

apply univariate ARMA models to forecast electricity load in Rio de Janeiro. Soares and Souza (2006) 

propose a stochastic model that employs generalized long memory (by means of Gegenbauer processes) 

to model the seasonal behavior of load, while Soares and Medeiros (2008) propose a Two-Level 

Seasonal Autoregressive (TLSAR) model. As pointed out by Soares and Souza (2006), forecasting 

errors are generally quite high during the summer due to the influx of air conditioning; thus, including 

temperature or other exogenous variables would help resolve this issue. Poor data availability is the 

primary reason cited as to why temperature is excluded from the model; where temperature data are 

available, both studies advocate its inclusion (Soares and Medeiros 2008; Soares and Souza 2006). 

b. ARMAX Models 

It would appear that while univariate ARMA models are sufficient for short-term load forecasting, 

the literature agrees that including exogenous variables like temperature can potentially improve 

forecasting performance (Soares and Medeiros 2008; Soares and Souza 2006; Ramanathan et al. 1997; 

Taylor et al. 2006; Darbellay and Slama 2000; Carpinteiro et al. 2004). Darbellay and Slama (2000) do 

both univariate modeling using an ARIMA model and multivariate modeling using an ARMAX model 

that incorporates temperature data. Using hourly load data from the Czech Republic, Darbellay and 

Slama (2000) find the ARMAX model to be superior.  

(i) Weather Variables 

Variations in weather are largely regarded as important factors in modeling electricity demand 

(Feinberg and Genethliou 2005). Of the exogenous variables considered in ARMAX models, weather 
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related variables (e.g., temperature) have by far been the most popular and at times, the most complex to 

account for (Ramanathan et al. 1997).  

The nonlinear relationship between load and temperature is well documented in the literature and is 

accounted for in various ways (Ramanathan et al. 1997; Hor et al. 2005; Darbellay and Slama 2000; 

Cottet and Smith 2003; Kyriakides and Polycarpou 2007). Hor et al. (2005) propose including heating 

degree-days (HDD) and cooling degree-days (CDD) as a method to cope with the nonlinear relationship 

between load and temperature. Alternatively, Ramanathan et al. (1997) simply add the square of 

temperature to account for the nonlinear relationship between temperature and load. Bruhns et al. (2005) 

decompose the load model into a weather dependent and a weather independent part wherein the 

nonlinearity is addressed by differentiating between a heating part (temperature rises above a threshold) 

and cooling part (temperature falls below a threshold) of the weather sensitive load. Cottet and Smith 

(2003) note temperature seems to be the most important meteorological factor in most locations and that 

the relationship between load and temperature is approximately “V”-shaped and is known to vary 

depending on the time of day. In some locations, humidity is thought to have a relationship with 

electricity load. Cottet and Smith (2003) resolve the nonlinearity issue by interacting temperature and 

humidity. Peirson and Henley (1994) consider the dynamic specification of the relationship between 

load and temperature and find it to be quite important; in fact, they report that a static specification can 

suffer badly from serial correlation beyond the first order, which will yield biased and inefficient 

estimates of regression coefficients. 

What can be taken away from the literature that considers the effect of temperature on load is that 

there tends to be agreement that load and temperature have a nonlinear relationship and that this 

nonlinearity must, in some way, be addressed in the model. While there is generally a consensus that 

accounting for temperature and other weather components will improve forecasting performance, data 
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availability may preclude the inclusion of such variables. Moreover, Fidalgo and Matos (2007) declare 

that including weather variables in the model for load really depends on the region being studied and its 

climatic conditions.  

3. Modeling Seasonality 

Among those studies that have modeled electricity load using ARMA and ARMAX models, there has 

been a consensus that load data suffers from multiple seasonality. According to Hahn et al. (2009), time-

series load data contain three seasonal patterns: intraday (daily), weekly, and annual. The intraday 

seasonal pattern reflects a peak (hours of high demand) and off-peak (hours of low demand) load 

pattern. The weekly pattern reflects the variation in load on weekdays versus weekends where load from 

the industrial sector is dramatically reduced. The specific weekday pattern can vary among regions and 

seasons (Hippert et al. 2001). Moreover, load can vary depending on the presence of a holiday or other 

exceptional event; several approaches exclude such exceptional cases by replacing load values on those 

days (Hippert et al. 2005; Taylor and McSharry, forthcoming).  

Many techniques have been adopted to address the complexity of seasonality in the load forecasting 

literature. Deterministic weekly seasonality can be accounted for through the inclusion of day-of-the-

week dummy variables (Gupta 1985). Soares and Medeiros (2008) include a dummy variable for each 

day of the week in addition to holiday dummies; in total 15 different binary variables are included to 

account for weekly and holiday seasonality. Similarly Cottet and Smith (2003) include 13 dummy 

variables; one for each day of the week and six to account for public holidays. Rather than include 

multiple dummy variables to account for holidays, Hippert et al. (2005) replace the atypical loads 

experienced on any holiday, by the load observed on that specific day of the week from the previous 

week. Cottet and Smith (2003) find that the estimates of the dummy variable coefficients were similar 

for workdays Monday through Friday with a slightly lower load on Friday afternoon and Monday 
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morning. Moreover, Cottet and Smith find that holiday loads can vary, depending on the holiday, but 

generally resemble the load profile seen on Sundays. 

Alternatively, other studies use seasonal differencing to account for stochastic seasonality (Taylor et 

al. 2006; Darbellay and Slama 2003). Taylor et al. (2006), for example, include both a 24
th

 difference (to 

account for intraday seasonality) and a 168
th

 difference (to model weekly seasonality). An alternative to 

24
th

 differencing, which accounts for intraday seasonality, is to model each individual hour separately 

thus allowing the parameters to vary based on intraday effects.
9
 It has been pointed out that this 

approach may not be appropriate when the dataset being used is not sufficiently large (Hippert et al. 

2001).  

 Annual and other types of seasonality have been addressed in the literature through the application of 

a Fourier decomposition
10

 (Soares and Medeiros 2008; Cottet and Smith 2003; Schneider et al. 1985; 

Weron 2006). Soares and Medeiros (2008), for example, model the annual cycle as a sum of sines and 

cosines, like a Fourier decomposition technique where the number of trigonometric functions is 

determined by the Schwarz Information Criterion (SIC) (Schwarz 1978). Similarly, Cottet and Smith 

(2003) use the Fourier decomposition to account for annual seasonality. Besides Fourier decomposition, 

annual seasonality can be addressed through inclusion of monthly dummies (Ramanathan et al. 1997). It 

is worth noting that when a temperature variable is added to a model, the annual seasonality may go 

away if temperature is largely responsible for the annual load fluctuations (Weron 2006). 

 

B. ARTIFICIAL INTELLIGENCE-BASED METHODS  

Artificial intelligence-based methods or AI-based (non-parametric) techniques as they are commonly 

                                                      
9
 See Fiebig et al. 1991; Peirson and Henley 1994; Ramanathan et al. 1997; Cottet and Smith 2003; Soares and Medeiros 

2005, 2008; Soares and Souza 2006. 
10

 In mathematics, a Fourier series decomposes a periodic function into a sum of simple oscillating functions, such as sines 

and cosines. 
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referred to, have been a widely studied and applied load forecasting technique. While they are beyond 

the scope of this study, any literature review of load forecasting techniques would be incomplete without 

an overview of AI-based techniques. 

AI-based techniques are very flexible nonlinear methods and no prior modeling experience is 

required for a decent load forecast. The algorithms utilized automatically classify the input data and 

associate it with the respective output values (Weron 2006). AI-based methods are often coined as 

“black-box”-type tools, though the empirical evidence from practical everyday use suggests they 

perform reasonably well (Weron 2006). Some examples of AI-based techniques include artificial neural 

networks (ANN), fuzzy logic, expert systems, and support vector machines (Weron 2006). The use of 

artificial neural network models has been a “widely studied electric load forecasting technique since 

1990” (Feinberg and Genethliou 2005, 278). ANN models have received the most attention and seem to 

be the most popular of the AI-based techniques. Accordingly, we will limit our discussion of AI-based 

methods to those of artificial neural networks.  

Artificial neural network (ANN) models are flexible nonlinear models that can be used in the electric 

utility industry for short-term forecasting. In practically applying a neural network technique to load 

forecasting, one must decide upon the number of architectures (e.g., Boltzmann machine, Hopfield, 

backpropagation), connectivity of layers, and bi-directional or uni-directional links among inputs and 

outputs (Kyriakides and Polycarpou 2007). After designing the neural network model to be used for 

time-series prediction, the next steps involve training the neural network, and then testing the trained 

network, as a form of neural network validation (Kyriakides and Polycarpou 2007).  

Neural network models are “well suited to the forecasting task when there are several explanatory 

variables and when there are important nonlinearities and variable interactions” (McMenamin 1997, 22). 

Neural network models are analogous to econometric techniques in many ways. A general neural 
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network forecasting model can be written as follows:  where the 

dependent variable (output) is Y, X is a set of explanatory variables (inputs), the F (output layer 

activation function) and H’s (hidden layer activation functions) are neural network functions, and the u 

is the error term for the model (McMenamin 1997), the terms in parentheses represent the neural 

network language. The parameters of the model are termed “connection strengths or network weights. 

Constant terms are called biases, and slopes are sometimes called tilts. The sample period data are called 

the training set, and the estimation process is called training” model (McMenamin 1997, 18). The 

training process is similar to that of typical regression estimation; the goal is to find the network weights 

that minimize the model errors. A general linear regression model can be written as follows (in 

econometric language, Y is the dependent variable, X is a vector of explanatory variables, β is a vector of 

regression coefficients, and u is the model error term): . McMenamin (1997) describes this 

regression model in neural network terms, “this is a single output feed forward system with no hidden 

layer and with a linear activation function at the output layer” (17). McMenamin reasons that “in this 

sense, the linear regression model is a severely limited special case of the neural network framework” 

(17).  

While ANN proponents may put down regression analysis, econometricians and forecasters often 

view ANNs as “black boxes” (Weron 2006; Hippert et al. 2005). Wang (2004) states it best,  

Too much reliance on the automatic feature of the modeling software may cover up problems 

when they arise. The more sophisticated the automatic modeling software is, the more the model 

will work like a black box, and the more it will be out of the forecasters’ control. Forecasters 

should always be in charge of their models, not the other way around. (15) 

 

Hippert et al. (2005) investigate to what extent artificial neural network (ANN) models’ over 

parameterization affects their performance in a practical forecasting sense. They examine this issue by 

comparing the performance of conventional regression forecasting methods to large neural networks to 

see which performs better in forecasting load profiles. They find that the ANN models perform at least 
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as well as the conventional regression forecasting methods.  

 

C. CONCLUSIONS FROM THE LITERATURE 

As the load forecasting literature has evolved over the years, some approaches have proven to be 

superior. More recently, the literature has gravitated toward time-series forecasting and neural network 

modeling. The two main differences between a neural network model and a linear regression model are 

that the regression model is linear in parameters and there are no hidden layer functions as there are in 

neural network models (McMenamin 1997). While AI-based techniques have proven to be a useful tool, 

it has been cited that training the model can take a great deal of time (Alfares and Nazeeruddin 2002). 

Moreover, some remain skeptic as to the performance of ANN and whether they truly outperform 

standard forecasting methods (Weron and Misiorek 2004). Two shortcomings of ANN that bring into 

question the credibility of studies that utilize ANN include complaints that ANN techniques overfit the 

data and that the models were not systematically tested. Alternatively, time-series techniques have been 

widely recognized as a useful load-forecasting tool and have been met with relative success. Regression 

methods are advantageous in that they are relatively easy to implement, easy to interpret, and allow for 

relatively easy performance assessments (Hahn et al. 2009).  

Darbellay and Slama (2000) directly compare the forecast accuracy of an ARMAX model and a 

neural network model and find that the ARMAX model is superior. Due to the relative ease and superior 

performance of regression analysis in the load forecasting literature, this study employs time-series 

multi-equation regression techniques to forecast short-term electricity load. 

 

III. THEORETICAL ANALYSIS 

The literature comes to a consensus that temperature, past load, calendar events, and seasonal factors 
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(intraday, weekly, and annually) have a significant impact on load in any given region. The driving 

factors behind hourly, weekly, and annual variations in load within ComEd’s service territory resemble 

those experienced elsewhere and largely reflect consumer lifestyle choices as well as industrial and 

commercial business activity. According to Ramanathan et al. (1985), electricity usage in any given 

hour is determined by variables related to both the day of the week and the time of the day. These 

variables, in turn, reflect the household’s respective lifestyle choices and responses to the environment. 

Lifestyle choices include the household’s work and leisure patterns while potential environmental 

determinants include the temperature, humidity, cloud cover, and wind chill. While the aforementioned 

variables reflect household decisions and responses to the environment that change quickly from hour-

to-hour and from day-to-day, another group of variables that can affect hourly load are those that change 

slowly over time (e.g., family size, income, appliances). In the context of a short-run load forecast; 

however, only short-run factors that can affect hourly load should be considered. According to 

Ramanathan et al. (1997), “Slowly changing variables such as increases in population, industrial growth, 

global warming, and so on are of little or no relevance in a model that is attempting to forecast from one 

day to the next” (164). 

In the STLF literature discussed in the preceding section, various functional forms have been applied 

to address the seasonal, cyclical, and exogenous factors that can affect load. One increasingly popular 

form that has been adopted by Fiebig et al. (1991), Peirson and Henley (1994), Ramanathan et al. 

(1997), Cottet and Smith (2003), Soares and Medeiros (2005, 2008), and Soares and Souza (2006) 

involves modeling each hour as a separate time-series equation. Such an approach can result in a better 

fit of the data in addition to removing the complexity of modeling intraday seasonality. Some studies 

that have adopted a multi-equation approach have applied the same model to all twenty-four-hours of 

load data (Soares and Souza 2006). While this approach allows the parameters to vary based on intraday 
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effects, it may not result in the most parsimonious model. This is due in part to the fact that load patterns 

during certain hours can display both unique and complex dynamics. For the sake of this study, we 

investigate whether fitting a single model for all twenty-four hourly series is a viable forecasting 

approach for the dataset at hand; specifically, we consider if a single model approach results in white 

noise residuals for all hours whilst satisfying the parsimony principle.  

Any model of electricity load, irrespective of whether the data series is for the entire series or for a 

smaller subset, will contain the following components: 

 

    (1) 

 

where h indicates the hour of the day and d indicates the daily observations and . 

The deterministic component contains variables that are perfectly predictable. Dummy variables for 

specific days of the week and federal holidays are all included in the model: 

 

     (2) 

 

Where Holiday indicates observed Federal holidays and Day indicates day-of-the-week dummy 

variables. 

For the purposes of modeling all twenty-four hours through a single model, one day of the week is 

excluded and accounted for through the inclusion of a constant. Generally, the coefficients on the 

weekday dummies are expected to be greater than a coefficient on a weekend dummy; however, the 

magnitude and potentially the direction of the effect may vary depending on which day is excluded. 

Finally, holidays must be taken into consideration; while these variables can be expected to have a 
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pronounced effect on load during peak hours, their effect on load during evening hours may be 

negligible. Regardless of the statistical significance, the coefficient on the holiday term is expected to be 

negative, which would reflect the significant decrease in industrial activities on those days as compared 

to a non-holiday. 

The temperature component, which is sometimes neglected due in part to the elusiveness of data, is 

one of the most significant drivers of load. The nonlinearity of temperature has been documented 

extensively in the literature
11

. In addition to the square of temperature, lags of temperature and 

interactions with summer months may also be relevant; a lagged temperature variable would reflect the 

fact that consumption decisions today are influenced by temperature experiences yesterday. If the day 

prior was particularly hot, for example, a consumer may increase their air conditioning usage in the 

present ceteris paribus. Alternatively, interactions with summer months also help explain the complex 

relationship between load and temperature. In particular, they account for the non-constant effect of 

temperature across some months. Theory would suggest that all else constant, temperature has a greater 

effect on load in summer months such that the sign on the interaction terms should be positive. 

Temperature is expected to significantly influence load regardless of whether that load occurs during an 

off-peak or peak hour.  

The ARMA component represents the appropriate model of cyclicality for off-peak and peak hours. 

The autoregressive (AR) component captures the fact that high load in hour i for any given day is a good 

indication that load will be higher in hour i on the following day(s). In other words, the load is assumed 

a linear combination of load from previous periods. The autoregressive component is more persistent 

than the moving average component which captures whether a shock in hour i persists the following 

day(s) in that hour. In other words, the autoregressive component is much better at modeling the 

                                                      
11

 See Ramanathan et al. 1997; Hor et al. 2005; Darbellay and Slama 2000; Cottet and Smith 2003; Kyriakides and 

Polycarpou 2007. 
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dynamic behavior of load as compared to including only a moving average component in the model 

(Weron 2006). The ARMA (p,q) representation can be specified for any given hour of load as follows: 

 

     (3) 

 

While theory suggests that an ARMA model is appropriate, empirical testing is necessary to 

determine the exact ARMA order. The final model, developed with a single model framework in mind
12

, 

is as follows: 

 

, + = , − + = , − + ,       (4) 

 

where all variables will be defined in the following data section. 

 

IV. DATA  

We consider a dataset containing hourly loads from May 1, 2004 through September 30, 2009. The 

data from the period from May 1, 2004 through April 30, 2008 are used for estimation purposes (in-

sample), and the data from the period May 1, 2008 through September 30, 2009 are left for out-of-

sample forecast evaluation. We believe an estimation window of four years to be adequate for 

estimation
13

. Load data is obtained from the “Historical Load Data” report from the PJM website
14

 and it 

                                                      
12

 A single model in the sense of applying it to all twenty-four hours (equations). 
13

 The four-year estimation window results in 1,461 observations for the full-week dataset, and 1,043 observations for the 

dataset that excludes weekends. Exelon: Commonwealth Edison Company joined the PJM regional transmission organization 
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summarizes the megawatt-hour net energy for load as consumed by the Commonwealth Edison 

Company service territory. It represents the best quality level of metered load within the ComEd zone. 

We analyze two separate datasets: one consisting of the entire dataset and the other consisting of data 

from weekdays
15

 only
16

. The datasets are then separated into twenty-four subsets
17

, each containing the 

load for a specific hour of the day. Thus, we estimate the load for the first hour of the day with one 

equation and the load for the second hour of the day from a different equation, and so on for all twenty-

four hours of a day (Ramanathan et al. 1997). This approach avoids having to model the complicated 

intraday patterns in hourly load (i.e., the load profile) and allows each hour to have a distinct weekly 

pattern
18

.  

 

A. DEPENDENT VARIABLE – LOAD  

Summary statistics for the load variable, measured in megawatt hours (MWh) are presented in table 1 

for the full in-sample data series and table 2 for the weekday in-sample data series
19

. As can be seen 

from figure 1 and figure 2, the data series appear to be stationary and they display clear daily, weekly, 

                                                                                                                                                                                        
(RTO) May 1, 2004. Thus for convenience of acquiring data on our dependent variable from one source, we chose this date 

as the starting point for our estimation period.  
14

 http://www.pjm.com/markets-and-operations/compliance/nerc-standards/historical-load-data.aspx 
15

 For the weekday estimation we consider a dataset containing hourly loads from May 3, 2004 through September 30, 2009. 

The data from the period from May 3, 2004 through April 30, 2008 are used for estimation purposes (in-sample), and the data 

from the period May 1, 2008 through September 30, 2009 are left for out-of-sample forecast evaluation. 
16

Ramanathan et al. (1997) estimate weekends and weekdays separately thus requiring 48 separate equations to forecast a full 

day. Although we do not estimate weekends separately, we are interested in determining whether modeling business days 

(Monday through Friday) separately alleviates any estimation problems associated with modeling the full-week. We will 

discuss specifics in the empirical method section.  
17

 Actually 48 subsets if one considers the weekday and full-week data separately.  
18

 Hippert et al. (2001) note that the difficulties associated in modeling the load profile are common to almost all of the load 

forecasting papers they review.  
19

 Both series underwent corrections for daylight savings time. Spring’s daylight savings occurred on the following dates 

within our entire sample: 4/3/2005, 4/2/2006, 3/11/2007, 3/9/2008, and 3/8/2009. During the spring’s daylight savings time, 

an hour is lost. We replace the null value for the H1AM2AM with an average of the load from H12AM1AM AND H2AM3AM. 

Fall’s daylight savings occurred on the following dates within our entire sample: 10/31/2004, 10/30/2005, 10/29/2006, 

11/4/2007, and 11/2/2008. During the fall’s daylight savings time, an hour is gained. We choose the value associate with the 

original H12AM1AM value and exclude the “gained” hour’s value. The reasoning behind this treatment is that electricity 

consumers are likely to treat the original H12AM1AM hour as they normally do, and the “gained” hour for extra sleeping time. 
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and annual seasonality. We tested each series (hour) for unit roots using the augmented Dickey-Fuller 

and Phillips-Perron unit root tests, and both tests indicated the load series are stationary in levels and 

logs for both the weekday and full-week data (Dickey and Fuller 1979, 1981; Phillips and Perron 1988). 

The daily seasonality is apparent when comparing the evening hours to the daytime hours. The annual 

seasonality may largely be attributed to temperature. The peaks in the summer months occur during the 

hottest time of the year when electric air conditioners are powered on. The smaller peaks in the winter 

months can be attributed to the fact that only about one-tenth of Illinois households actually use 

electricity as their primary energy source for home heating (EIA 2009). This annual seasonality is 

apparent even after the exclusion of weekends, as is apparent from figure 2. The influence of holidays is 

apparent by the sharp drops in demand during the daytime hours, which is most easily seen in the 

weekday series in figure 2. Summary statistics regarding the variables we use to model these factors are 

given in table 3 and are discussed later in this section.  

For estimation purposes, we take the natural logarithm of the MW-hour net energy for load as 

consumed by the Commonwealth Edison Company service territory
20

. We chose to work with 

logarithms of the load series because as Soares and Souza (2006) point out it allows the weekly 

seasonality and the holiday effect to be modeled additively, whereas they are multiplicative in the 

original series. Soares and Souza (2006) note that these “effects are believed to be multiplicative as 

consumption tends to vary proportionally with the number of consumers” (23).  

 

B. CALENDAR EFFECTS 

The daily pattern or seasonality is removed by modeling each hour of the day separately (Fiebig et al. 

1991; Peirson and Henley 1994; Ramanathan et al. 1997; Cottet and Smith 2003; Soares and Medeiros 

                                                      
20

 Although the results are not given in this paper, we did experiment with applying the same models to the original series and 

the results were essentially the same. 
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2005, 2008; Soares and Souza 2006). We include seasonal dummies to model the weekly pattern and the 

influence of holidays. We group several workdays together as one dummy variable, namely Tuesday, 

Wednesday, and Thursday, because we feel it appropriate to model these as a single type of day and it 

allows for a more parsimonious estimation. We model the other days-of-the-week as individual dummy 

variables and exclude one in each estimation. For the weekday model, we include one holiday dummy 

variable that reflects public holidays
21

 for Federal employees as established by Federal law (5 U.S.C. 

6103) and published on the U.S. Office of Personnel Management website
22

.  

 

C. WEATHER DATA 

For modeling the weather component, we use data obtained from the National Climatic Data Center
23

 

for the Chicago O’Hare International Airport
24

. We obtained the average daily
25

 temperature in degrees 

Fahrenheit and the average daily wind speed in knots. A wind speed adjusted temperature (WWP)
26

 was 

utilized in some of the estimated equations to better model the winter weather component of the load 

series. The WWP is a measure of cold stress in winter and is widely used
27

 by electric utilities (PJM 

                                                      
21

 Public holidays include New Year's Day, Birthday of Martin Luther King, Jr., Washington's Birthday, Memorial Day, 

Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving Day, and Christmas Day. Since most Federal 

employees work on a Monday through Friday schedule, when a holiday falls on a nonworkday such as a Saturday or Sunday, 

the holiday usually is observed on Monday (if the holiday falls on Sunday) or Friday (if the holiday falls on Saturday). The 

actual day the holiday is “observed” (as opposed to the actual holiday) is included in the holiday dummy variable in our 

weekday model.  
22

 http://www.opm.gov/Operating_Status_Schedules/fedhol/2009.asp  
23

 http://www.ncdc.noaa.gov/oa/land.html The National Climatic Data Center (NCDC) is part of the National Oceanic and 

Atmospheric Administration (NOAA) and the U.S. Department of Commerce. 
24

 Weather data for Chicago O’Hare International Airport were thought to be a good proxy for the weather in the ComEd 

service territory because most of ComEd’s load stems from Chicago and its surrounding areas, plus the data were available 

for the entire sample period.  
25

 To our dismay, we had to use daily averages rather than the hourly series because the hourly data that NCDC provided was 

inadequate for estimation purposes (e.g., random hourly observations missing). 
26

 The average daily wind speed in knots was converted to miles per hour (mph) by multiplying the series by 1.15077945. 

WWP=TEMP-(0.5*(WDSPmph-10)) if WDSPmph>10mph; WWP=TEMP if wind≤10mph. 

TEMP is the mean temperature for the day in degrees Fahrenheit to tenths. 

WDSP is the mean wind speed for the day in knots to tenths. 

WDSPmph=WDSP*1.15077945 converting knots to mph. 
27

 Also widely used is the Temperature-Humidity Index (THI), though we were not able to find quality controlled humidity 

level data. 
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Resource Adequacy Planning 2009; Feinberg and Genethliou 2005; Weron 2006). 

We investigate the relationship between load and temperature by examining scatter plots of the two 

series. The scatter plots of temperature and load at various hours indicate that indeed the relationship is 

nonlinear, which is consistent with the vast majority of the load forecasting literature (Ramanathan et al. 

1997; Hor et al. 2005; Darbellay and Slama 2000; Cottet and Smith 2003; Kyriakides and Polycarpou 

2007). In fact, the relationship varies depending on the time of day, which further supports the multi-

equation specification used as the estimation procedure, which allows the temperature coefficient to vary 

depending on the hour of the day (and we allow for the month of the year in some cases). It appears 

there is a possibility of structural instability in the relationship for the full-week series. Examining the 

scatter plots of load versus temperature for the full-week series (figure 3a and figure 3c) and the 

weekday series (figure 3b and figure 3d), this instability seems to vanish once the weekends are 

removed. 

 

V. ECONOMETRIC METHOD AND FORECASTING RESULTS 

Some studies that have employed a multi-equation approach have applied the same model to all 

twenty-four hours of load data (Soares and Souza, 2006). We test whether such a specification falls short 

in terms of producing the optimal and most parsimonious model for all hours considered. The antithesis 

would be to create a unique model each hour; however, such an approach is somewhat cumbersome 

since many hours during the day and throughout portions of the week reflect the same patterns. For the 

sake of this study, we begin our investigation by exploring whether fitting a single model for all twenty-

four hourly series is a viable forecasting approach for the dataset at hand. Accordingly, a parsimonious 

model is developed and fit to the entire series (i.e., all twenty-four equations). Then, after analyzing the 

residuals and the out-of-sample forecasting performance, the full-week data is disaggregated and 
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modeled in a way that results in the most parsimonious forecasting model that not only has superior out-

of-sample forecasting performance, but also is easily constructed and applied. 

 

 

A. FULL-WEEK 

1. Specification and Estimation Method 

In choosing the best model, an analysis of the autocorrelation function (ACF), the partial 

autocorrelation function (PACF), the Schwarz Information Criterion (SIC) and the Akaike Information 

Criterion (AIC) for the 3AM4AM model was taken into account (Schwarz 1978; Akaike 1974, 1987; 

Diebold 2007; Makridakis 1998). This hour in particular was chosen to construct the full-week model 

due to its comparatively simple dynamics. We modeled the weekly seasonality first by including dummy 

variables for Monday, Friday, Sunday, and grouped Tuesday, Wednesday, and Thursday together
28

. The 

temperature component is the most complicated part of the model since temperature variables are very 

important in modeling short-run fluctuations in electricity consumption, thus we allow for a rich 

specification of the component (Ramanathan et al. 1997). We are able to estimate the model with the 

actual temperature, although in reality a forecaster would insert the forecasted temperature that the 

weather service provides. The current temperature as well as its lag (e.g., temperature from the day 

before) are included as well as their squares (i.e., allowing a nonlinear quadratic relationship). The 

temperature effect is not constant across months, thus for the summer months (i.e., June, July, and 

August) we include interaction terms between the monthly dummy variable and temperature
29

. Finally, 

                                                      
28

 Cottet and Smith (2003) find that the estimates of the dummy variable coefficients were similar for workdays Monday 

through Friday with a slightly lower load on Friday afternoon and Monday morning, “reflecting spillover from the weekends 

in NSW [New South Wales] working patterns. Loads on Saturday are higher than those on Sunday up until around 17:00, 

which reflects retail trading during Saturday. Loads on the public holidays vary depending on the holiday type, although they 

follow a profile similar to that of Sunday” (843).  
29

 As noted previously we were unable to obtain a measure of humidity for the area, which would likely have proved useful in 

modeling the temperature effect in the summer. Other papers have included interaction terms between some months and 

temperature as well (Ramanathan et al. 1997). Cottet and Smith (2003) find that “for mid-summer, the seasonal effect on load 
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we determine the appropriate lag length for the autoregressive moving average (ARMA) terms by 

analyzing the ACF and the PACF of the residuals after taking the daily and weekly patterns as well as 

the weather component into account. We determine an ARMA(2,1) model to be most appropriate for the 

3AM4AM model after examination of the SIC and the AIC (Schwarz 1978; Akaike 1974, 1987). The full-

week model used for the estimation of each hour is presented below. We omit subscripts for the hours 

because the specification is the same. Let the hourly load for day t be represented by Loadt and let 

Yt=ln(Loadt). 

 

        (5) 

 

The estimated parameters and the corresponding adjusted R
2
 for each hour of the day are illustrated 

in table 4
30

. The vast majority of estimated coefficients are significant at the one percent level. The table 

also shows the p-value of the Ljung-Box
31

 test for no error serial autocorrelation of order five and six 

(Ljung and Box 1978). The Q-statistic is often used as a test of whether the series is white noise
32

. 

However it should be noted that Dezhbakhsh (1990)
33

 finds the application of the Ljung-Box test to be 

                                                                                                                                                                                        
is highest during the period 10:30-17:00, probably due to preprogrammed office air-conditioning” (844). 
30

 Possible heteroskedasticity is taken into account in statistical inference using the Newey-West correction for 

heteroskedasticity and autocorrelation (Newey and West 1994). Though the standard errors are not listed in this table in order 

to conserve space, these can be provided for the interested reader by emailing the authors. 
31

 The Ljung-Box Q-statistic at lag k is a test statistic for the null hypothesis that there is no autocorrelation up to order k 

(EViews 2008; Ljung and Box 1978).  where τj is the j-th autocorrelation and T is the number of 

observations (EViews 2008). 
32

 Choosing the order of lag to use for the test is a practical problem. By choosing too small a lag, the test may not detect 

serial correlation at higher-order lags. By choosing too large a lag, the test may have low power since the significant 

correlation at one lag may be diluted by insignificant correlations at other lags (EViews 2008). Thus, we decide to report the 

p-values of the Q-statistics for two different lag lengths, 5 and 6 for the full-week model.  
33

 Dezhbakhsh (1990) evaluates the performance of several tests using Monte Carlo experiments. Dezhbakhsh reports that 
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inadequate when applied to linear models with lagged dependent variables and exogenous regressors 

(e.g., ARMAX models) (EViews 2008; Ljung and Box 1978). However, since these statistics are still 

reported in most of the recent load forecasting literature, we report them with the estimation results 

(Soares and Souza 2006; Soares and Medeiros 2005; 2008). Using the Ljung-Box test, there appears to 

be remaining autocorrelation for several hours during the day, namely hours 11 through 23. Increasing 

the lag order of both the autoregressive and moving average terms does not attenuate the problem
34

, thus 

indicating the possibility of misspecification in the full-week model. Nevertheless, we still report the 

out-of-sample forecasting results for the full-week model in the next section.  

2. Forecasting Results 

Table 5 reports the one-step ahead out-of-sample forecasting results for each hour for the May 1, 

2008 through September 30, 2009 period using the model described in the previous section and the 

parameter estimates reported in table 4 (i.e., the model is not re-estimated during the out-of-sample 

period). Although the most popular measure of forecasting accuracy in the load forecasting literature is 

the mean absolute percentage error (MAPE) (Soares and Souza 2006; Darbellay and Slama 2000), we 

report the MAPE
35

 as well as the root mean squared error
36

 (RMSE) and the mean absolute error
37

 

                                                                                                                                                                                        
“the results warn against using the popular DW [Durbin-Watson statistics] and Q tests and provide support for using Durbin’s 

h and, in particular m tests” (1990, 127). Unfortunately, Durbin’s m-test was not easily accessible, so we use the Ljung-Box 

Q-statistic as is still widely used in the literature (EViews 2008; Ljung and Box 1978; Soares and Souza 2006; Soares and 

Medeiros 2005; 2008). 
34

 Besides changing the ARMA specification, it was investigated whether the inclusion of a holiday dummy variable (the 

holiday dummy was originally excluded because we modeled the hour 3AM4AM and the holiday dummy did not seem to have 

an impact during this period), removal of insignificant temperature variables, as well as various other changes would generate 

white noise residuals; however, none seemed to solve the problem. These facts point to the possible misspecification of the 

full-week model.  
35

 Mean Absolute Percentage Error (MAPE) =  where yt is the actual value in period t and  is the 

forecasted value in period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 

36
 Root Mean Squared Error (RMSE) =  where yt is the actual value in period t and  is the forecasted 

value in period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 
37

 Mean Absolute Error (MAE) =  where yt is the actual value in period t and  is the forecasted value in 

period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 



27 

(MAE). Note that the RMSE and the MAE depend on the scale of the dependent variable
38

. All three 

statistics agree that the forecasting model performs the best for hour 4 (3AM4AM) and the worst for hour 

17 (5PM6PM). Given that hourly loads on the weekend display a much different pattern than during the 

weekdays, removing weekends from the dataset may affect which hours have the best and worst 

forecasting performance. Specifically, it is of interest to see whether the best and the worst forecasting 

performance occur during the same hours
39

.  

 

B. WEEKDAYS 

1. Specification and Estimation Method 

In choosing the best model for the weekday dataset, an analysis of the autocorrelation function 

(ACF), the partial autocorrelation function (PACF), the Schwarz Information Criterion (SIC) and the 

Akaike Information Criterion (AIC) for the 5PM6PM model
40

 was taken into account (Schwarz 1978; 

Akaike 1974; Diebold 2007; Makridakis 1998). We modeled the weekly seasonality first by including a 

dummy variable for Monday as well as the Tuesday, Wednesday, and Thursday group dummy. We also 

include a dummy variable to model observed holidays. We include the wind speed adjusted temperature 

(WWP)
41

 as well as its squared value, to model the winter weather component of the load series. Finally, 

                                                      
38

 Though we estimate our model using the natural log of load, we forecast the actual value of the series rather than the 

natural log of the value.  
39

 Since we alter the dataset by excluding the weekends for the weekday model, we will not be able to compare the actual 

MAPE, RMSE, or MAE across models. Soares and Medeiros (2008) state that several “authors achieve MAPEs as low as 2% 

when predicting the total daily load,” but they point out that “the results of different models cannot be compared on different 

datasets because the differences among load curves in different countries” (639). Soares and Medeiros (2008) further note 

that “if different datasets are used, the same model(s) must be used, and the comparison should be made among datasets and 

not models. If the researcher wants to compare the performance of different models, the same data with the same forecasting 

period must be used” (639). 
40

 We were most interested in analyzing the 5PM6PM model (hour 17) first because of the inability to obtain white noise 

residuals in the full-week estimation for this hour as well as the fact that it performed the worst in the out-of-sample 

forecasting for the full-week model.  
41

 The average daily wind speed in knots was converted to miles per hour (mph) by multiplying the series by 1.15077945. 

WWP=TEMP-(0.5*(WDSPmph-10)) if WDSPmph>10mph; WWP=TEMP if wind≤10mph. 

TEMP is the mean temperature for the day in degrees Fahrenheit to tenths. 

WDSP is the mean wind speed for the day in knots to tenths. 
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we determine the appropriate lag length for the autoregressive moving average (ARMA) terms by 

analyzing the ACF and the PACF of the residuals after taking the daily and weekly patterns as well as 

the holiday and weather component into account. We determine an ARMA(2,1) model to be most 

appropriate for the 5PM6PM model after examination of the SIC and the AIC (Schwarz 1978; Akaike 

1974). The weekday model used for the estimation of each hour is presented below. We omit subscripts 

for the hours because the specification is the same. Let the hourly load for day t be represented by Loadt 

and let Yt=ln(Loadt). 

 

            (6) 

 

The estimated parameters and the corresponding adjusted R
2
 for each hour of the day are illustrated 

in table 6. Possible heteroskedasticity is taken into account in statistical inference using the Newey-West 

correction for heteroskedasticity and autocorrelation (Newey and West 1994), thus the 

heteroskedasticity and autocorrelation robust standard errors are in parentheses. The vast majority of 

estimated coefficients are significant at the one percent level. The table also shows the p-value of the 

Ljung-Box
42

 test for no error serial autocorrelation of order five, six, and seven (Ljung and Box 1978). 

Using the Ljung-Box test, there appears to be remaining autocorrelation of order five for several hours 

during the evening, namely hours 23, 24, and 1 through 5; because of this, we decide to estimate the 

night hours using a different model, which is very similar
43

 to the model chosen for the full-week 

                                                                                                                                                                                        
WDSPmph=WDSP*1.15077945 converting knots to mph. 
42

 The Ljung-Box Q-statistic at lag k is a test statistic for the null hypothesis that there is no autocorrelation up to order k 

(EViews 2008; Ljung and Box 1978).  where τj is the j-th autocorrelation and T is the number of 

observations (EViews 2008). 
43

 Even though this is the weekday only model, the lagged temperature variable represents the temperature from the day 

before, even if the day before is a Sunday.   
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estimation. Let the hourly load for day t be represented by Loadt and let Yt=ln(Loadt). 

 

 

 

The estimated parameters using this model for the night time hours and the previous model for the 

daytime hours and the corresponding adjusted R
2
 for each hour of the day are illustrated in table 7. The 

heteroskedasticity and autocorrelation robust standard errors are in parentheses (Newey and West 1994). 

The vast majority of estimated coefficients are significant at the one percent level. The table also shows 

the p-value of the Ljung-Box
44

 test for no error serial autocorrelation of order five, six, and seven (Ljung 

and Box 1978). Using the Ljung-Box test, the residuals for all hours of the day and night exhibit white 

noise, thus we proceed to evaluating the out-of-sample forecast performance. We are in agreement with 

Soares and Medeiros (2008) when they conclude that a “point that deserves attention is the fact that the 

final model specification differs across hours, corroborating our view that different hours need to be 

modeled separately because they have different structures and dynamics” (637-8).  

2. An Example for Hour 17 (5PM6PM) 

Explanatory variables for hour 17 in the weekday model include dummy variables for Monday (M), 

one for Tuesday, Wednesday, and Thursday (TWT), and one for Federal holidays (H). The explanatory 

variables also include a wind speed adjusted temperature (WWP)
45

 as well as WWP squared
46

 to better 

                                                      
44

 The Ljung-Box Q-statistic at lag k is a test statistic for the null hypothesis that there is no autocorrelation up to order k 

(EViews 2008; Ljung and Box 1978).  where τj is the j-th autocorrelation and T is the number of 

observations (EViews 2008). 
45

 The average daily wind speed in knots was converted to miles per hour (mph) by multiplying the series by 1.15077945. 

WWP=TEMP-(0.5*(WDSPmph-10)) if WDSPmph>10mph; WWP=TEMP if wind≤10mph. 
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model the winter weather component of the load series. The WWP is a measure of cold stress in winter 

and is widely used by electric utilities (PJM 2009; Feinberg and Genethliou 2005; Weron 2006). 

ARMA(2,1) components were also included in the estimation. Let the 5PM6PM hourly load (hour 17) for 

day t be represented by Load17,t and let Y17,t=ln(Load17,t). 

 

                                                                                                                                          (8) 

 
  

Houra          Adj. R2 QLB(5)b QLB(6) QLB(7) 

17 9.6641 0.0267 0.0244 -0.1195 -0.0157 0.0002 1.2792 -0.2955 -0.7905 0.84 0.467 0.250 0.359 
 (0.0391) (0.0054) (0.0039) (0.0173) (0.0014) (0.0000) (0.0535) (0.0508) (0.0355)     

Notes: Newey-West heteroskedasticity and autocorrelation robust standard errors are in parentheses (Newey and West 1994). Estimation sample includes the 

period 05/05/2004 – 04/30/2008, n=1041 and excludes weekends. 

  

 

Plugging the estimated coefficients into equation (8), the estimated model for hour 17 can be written 

compactly as in equation (9). 

 

          (9) 

 

 

Equation (9) was estimated by ordinary least squares
47

 and the Newey-West heteroskedasticity and 

autocorrelation robust standard errors were analyzed when determining the statistical significance of the 

estimated parameters (Newey and West 1994). All of estimated parameters are statistically significant at 

                                                                                                                                                                                        
TEMP is the mean temperature for the day in degrees Fahrenheit to tenths. 

WDSP is the mean wind speed for the day in knots to tenths. 

WDSPmph=WDSP*1.15077945 converting knots to mph. 
46

 As can be seen in figures 3b and 3d, the relationship between load and temperature is not a linear one.  
47

 EViews 6 was the software program used to estimate the equations.  
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the one percent level. The coefficient of determination indicates that roughly 84% of the variation in the 

5PM6PM hourly load can be explained by all the explanatory variables included in the estimation taken 

together. The p-values of the Ljung-Box Q-statistic at lags 5, 6, and 7 fail to reject the null hypothesis 

that there is no autocorrelation up to order 5, 6, or 7, indicating the residuals are likely white noise.  

Equation (9) for the 5PM-6PM (HOUR17) period shows the typical form of all of the equations. The 

dependent variable is the natural log of the hourly load for the 5PM-6PM hour over the period May 5, 

2004 through April 30, 2008 (n=1041). Friday is the day of the week that is excluded from the 

estimation; therefore, Friday is considered part of the “reference” group. All of the estimated 

coefficients exhibit their expected signs. Since this is a semi-logarithmic equation the interpretation of 

the dummy variable coefficients as well as the WWP coefficients involves the formula: 

, where  is the estimated coefficient (Wooldridge 2009; Halvorsen and Palmquist 1980). For 

dummy variables, this formula derives the percentage effect on hourly load of the presence of the factor 

represented by the dummy variable. Thus, we utilize this formula and proceed to interpretation of the 

estimated equation.  

The estimated coefficient for Monday (M) in equation (9) indicates that the 5PM-6PM hourly load is 

2.7%
48

 higher on Monday (than Friday, the reference group). This is as expected since businesses are 

likely to be in full swing by 5PM-6PM at the beginning of the workweek and residential customers just 

getting home may engage in energy intensive activities (e.g., lighting and cooking), thus consuming 

more energy than at the end of the workweek (Friday) at the same time of day (5PM-6PM) when 

businesses may close early before the weekend and residential customers may decide to eat out at a later 

time. The estimated coefficient for Tuesday, Wednesday, and Thursday (TWT) in equation (9) indicates 

                                                      
48

 ;  
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the 5PM-6PM hourly load is 2.5%
49

 higher on Tuesday, Wednesday, and Thursday (than Friday, the 

reference group). This is as expected since businesses are likely to be in full swing during the middle of 

the workweek and residential customers just getting home may engage in energy intensive activities 

(e.g., lighting and cooking), thus consuming more energy than at the end of the workweek (Friday) at 

the same time of day (5PM-6PM) when businesses may close early before the weekend and residential 

customers may decide to eat out at a later time. 

The interpretation of the impact that the wind speed adjusted temperature variable (WWP) has on the 

5PM-6PM hourly load must be analyzed with care. Starting at zero degrees Fahrenheit, as it warms up 

outside by one degree, there is a reduction in the 5PM-6PM hourly load by 1.56%
50

, ceteris paribus. 

Taking the partial derivative of Y17,t with respect to WWP; then setting the equation equal to zero; and 

finally solving for WWP, we find that after 39.25
51

 degrees Fahrenheit, an increase in temperature 

begins to increase the 5PM-6PM hourly load. In going from 39 degrees to 40 degrees Fahrenheit, load is 

predicted to decrease by 0.01%
52

. In going from 40 degrees to 41 degrees Fahrenheit, load is predicted 

to increase by 0.03%
53

. The mean temperature in the sample is about 51 degrees Fahrenheit. In going 

from 51 degrees to 52 degrees Fahrenheit, load is predicted to increase by 0.47%
54

. In going from 75 

degrees to 76 degrees Fahrenheit, load is predicted to increase by 1.44%
55

. Thus, below 39.25 degrees 

Fahrenheit, the impact that temperature has on load is that load decreases at a decreasing rate as 

temperature increases. Above 39.25 degrees Fahrenheit, the impact that temperature has on load is that 

                                                      
49

 ;  
50

  
51

  

  

  

  

  
52

  
53

   
54

  
55
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load increases at an increasing rate as temperature increases.  

The estimated coefficient for Federal holidays (H) in equation (9) indicates the 5PM-6PM hourly load 

is 11.3%
56

 lower on Federal holidays (than non-holidays). This is as expected since many businesses 

close on Federal holidays, thus reducing their demand for energy.  

A 1% increase in the 5PM-6PM hourly load the previous day (Y17,t-1) is expected to have a positive 

impact on the 5PM-6PM hourly load today (Y17,t) by about 1.28%
57

, ceteris paribus. A 1% increase in the 

5PM-6PM hourly load 2 days before (Y17,t-2)
58

 is expected to inversely impact the 5PM-6PM hourly load 

today (Y17,t) by about 0.3%, ceteris paribus. A 1% increase in the 5PM-6PM hourly load disturbances (i.e., 

shocks to the system) ( ) from the previous day is expected to inversely impact the 5PM-6PM 

hourly load today (Y17,t) by about 0.79%, ceteris paribus. 

3. Forecasting Results 

Table 8 reports the one-step ahead out-of-sample forecasting results for each hour for the May 1, 

2008 through September 30, 2009 period using the models described in the previous section and the 

parameter estimates reported in table 6 and table 7 (i.e., the model is not re-estimated during the out-of-

sample period). We compare the forecasting performance from the weekday model estimated in table 6 

to that estimated in table 7. Estimating the weekday and weeknights using separate models proves to be 

superior
59

 as the lower values of the RMSE, MAE, and MAPE indicate
60

. All three statistics agree that 

the forecasting model performs the best for hour 4 and the worst for hour 17, which is the same 

conclusion we reached in the full-week model. Thus the hours which exhibited the best and the worst 

out-of-sample forecasting performance are likely to be a function of the volatility experienced during 

                                                      
56

 ;  
57

 Since the Y17,t is actually the natural log of load.  
58

 Note that Yt-1 and Yt-2 actually represents the load for weekdays only, thus if Yt is a Monday, then Yt-1 and Yt-2 represent 

load from Friday and Thursday, respectively.  
59

 Although the RMSE chooses the weekday model (table 6) for hour 5.  
60

 Comparing the RMSE, MAE, and MAPE for hours 23, 24, and 1 through 5 across models in table 8 shows these statistics 

to be lower when the model from table 7 is used. 
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those hours (e.g., hour 4 has the smallest standard deviation as can be seen in table 1 and table 2). It may 

also be warranted to use a more sophisticated modeling approach for hour 17 (5PM6PM)
61

. A measure of 

daylight hours may help improve forecasting performance in that it affects public lighting during 

different times of the year; however, we did not have access to this type of data. 

 

 

VI. SUMMARY AND CONCLUSIONS 

As electricity markets have deregulated over the last decade, accurate load forecasts have become a 

vital part of a utility’s long-, medium-, and short-term generation and procurement planning. An 

inaccurate load forecast can have severe consequences for ComEd’s customers in the form of higher 

rates. The objective of this paper was to forecast short-term electricity load using ARMAX models with 

hourly load data for the Commonwealth Edison Company (ComEd). To date, no published study to our 

knowledge has used ARMAX modeling to forecast electricity load in ComEd’s territory. 

Given the success with multi-equation models in the literature, each hour of the day is constructed as 

a separate series. Constructing a single model to apply to all of the twenty-four series, a model that 

excludes weekends, and a separate nighttime model reveals that it is necessary to model peak and off-

peak hours separately. We found that applying a peak and off-peak model to the corresponding peak and 

off-peak hour’s works relatively well. Ultimately, this study provides further evidence regarding the 

importance of modeling off-peak and peak hours separately. Our approach results in a parsimonious 

forecasting model that not only has superior out-of-sample forecasting performance, but also is easily 

constructed and applicable for day-to-day load forecasts for territories similar ComEd’s. 

Future research could consider those hours that exhibit greater complexity (e.g., 5PM6PM) and 

examine the possibility of time-varying volatility. Measuring any improvement in forecasting 

                                                      
61

 However, this was beyond the scope of the present study which is focused on parsimony and ease of use.  
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performance from modeling each hour separately versus modeling one peak and one off-peak hour 

would be useful.  
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VII. TABLES 

 

 

TABLE 1. SUMMARY STATISTICS: LOAD FOR EACH FULL-WEEK HOUR FROM MAY 1, 2004 

THROUGH APRIL 30, 2008 

Hour  Mean
a
  Median  Max.  Min.  Std. Dev. 

H1AM2AM 1 9,680 9,449 16,547 7,385 1,274 

H2AM3AM 2 9,428 9,218 15,890 7,237 1,198 

H3AM4AM 3 9,323 9,131 15,467 7,104 1,155 

H4AM5AM 4 9,449 9,279 15,370 7,190 1,149 

H5AM6AM 5 9,948 9,822 15,705 6,975 1,236 

H6AM7AM 6 10,796 10,765 16,495 7,012 1,496 

H7AM8AM 7 11,481 11,551 17,833 7,440 1,680 

H8AM9AM 8 11,955 11,943 19,111 7,878 1,746 

H9AM10AM 9 12,285 12,197 20,168 8,279 1,837 

H10AM11AM 10 12,596 12,368 21,385 8,418 2,006 

H11AM12PM 11 12,758 12,393 22,265 8,472 2,184 

H12PM1PM 12 12,841 12,348 22,812 8,577 2,353 

H1PM2PM 13 12,929 12,362 23,336 8,474 2,521 

H2PM3PM 14 12,933 12,294 23,491 8,383 2,629 

H3PM4PM 15 12,940 12,257 23,613 8,226 2,672 

H4PM5PM 16 13,101 12,513 23,613 8,305 2,622 

H5PM6PM 17 13,247 12,831 23,386 8,505 2,509 

H6PM7PM 18 13,197 12,872 22,970 8,621 2,324 

H7PM8PM 19 13,115 12,782 22,431 8,774 2,116 

H8PM9PM 20 13,008 12,621 22,416 9,138 1,991 

H9PM10PM 21 12,566 12,155 21,929 9,159 1,903 

H10PM11PM 22 11,689 11,302 20,578 8,821 1,721 

H11PM12AM 23 10,757 10,425 18,762 8,249 1,530 

H12AM1AM 24 10,095 9,809 17,459 7,812 1,381 
Notes: n=1,461 

 
a
Summary statistics are in megawatt hours (MWh). 
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TABLE 2. SUMMARY STATISTICS: LOAD FOR EACH WEEKDAY HOUR FROM MAY 1, 2004 

THROUGH APRIL 30, 2008 

Hour  Mean
a
  Median  Max.  Min.  Std. Dev. 

H1AM2AM 1 9,781 9,523 16,547 7,385 1,294 

H2AM3AM 2 9,540 9,333 15,890 7,237 1,211 

H3AM4AM 3 9,455 9,274 15,467 7,104 1,159 

H4AM5AM 4 9,638 9,460 15,370 7,190 1,131 

H5AM6AM 5 10,287 10,136 15,705 7,055 1,131 

H6AM7AM 6 11,378 11,262 16,495 7,139 1,188 

H7AM8AM 7 12,202 12,083 17,833 7,446 1,241 

H8AM9AM 8 12,663 12,498 19,111 7,878 1,350 

H9AM10AM 9 12,948 12,627 20,168 8,285 1,526 

H10AM11AM 10 13,250 12,766 21,385 8,976 1,744 

H11AM12PM 11 13,403 12,772 22,265 9,154 1,966 

H12PM1PM 12 13,488 12,753 22,812 9,172 2,166 

H1PM2PM 13 13,612 12,773 23,336 8,980 2,339 

H2PM3PM 14 13,610 12,713 23,491 8,786 2,464 

H3PM4PM 15 13,597 12,714 23,613 8,670 2,520 

H4PM5PM 16 13,726 13,009 23,613 9,014 2,473 

H5PM6PM 17 13,825 13,295 23,386 9,072 2,367 

H6PM7PM 18 13,726 13,347 22,970 8,965 2,192 

H7PM8PM 19 13,609 13,202 22,431 8,931 1,993 

H8PM9PM 20 13,464 12,954 22,416 9,414 1,886 

H9PM10PM 21 12,959 12,441 21,929 9,461 1,822 

H10PM11PM 22 11,987 11,516 20,578 8,999 1,666 

H11PM12AM 23 10,854 10,484 18,762 8,249 1,568 

H12AM1AM 24 10,187 9,893 17,459 7,812 1,411 
Notes: Sample excludes weekends. n=1,043 

 
a
Summary statistics are in megawatt hours (MWh). 
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TABLE 3. SUMMARY STATISTICS: VARIABLES 

Name Type Definition n Mean Median Max. Min. Std. Dev.  

Full Week          

M Dummy equals 1 if Monday, otherwise equals 0 1,461 0.14 0.00 1.00 0.00 0.35  

TWT Dummy equals 1 if Tuesday, Wednesday, or 

Thursday, otherwise equals 0 

1,461 0.43 0.00 1.00 0.00 0.50 

 

F Dummy equals 1 if Friday, otherwise equals 0 1,461 0.14 0.00 1.00 0.00 0.35  

SU Dummy equals 1 if Sunday, otherwise equals 0 1,461 0.14 0.00 1.00 0.00 0.35  

WWP Continuous Wind speed adjusted temperature
a
 (°F) 1,461 50.71 51.90 88.99 -5.05 19.92  

TMP Continuous Temperature in degrees Fahrenheit
b
 1,461 51.29 52.40 89.00 -3.70 19.65  

JUN Dummy equals 1 if June, otherwise equals 0 1,461 0.08 0.00 1.00 0.00 0.27  

JUL Dummy equals 1 if July, otherwise equals 0 1,461 0.08 0.00 1.00 0.00 0.28  

AUG Dummy equals 1 if August, otherwise equals 0 1,461 0.08 0.00 1.00 0.00 0.28  

Weekday          

WWP Continuous Wind speed adjusted temperature (°F) 1,043 50.95 52.14 88.99 -4.86 20.02  

TMP Continuous Temperature in degrees Fahrenheit 1,043 51.56 52.70 89.00 -3.70 19.76  

TMPt-1 Continuous Temperature in degrees Fahrenheit from 

the previous day 

1,043 51.67 53.40 89.00 -3.70 19.77 

 

H Dummy equals 1 if day is an observed holiday
c
, 

otherwise equals 0 

1,043 0.04 0.00 1.00 0.00 0.19 

 
Notes: Summary statistics are for the in-sample estimation period.  

 
a
WWP=TMP-(0.5*(WDSPmph-10)) if WDSPmph>10mph; WWP=TMP if wind≤10mph. Where TMP is the mean temperature for the day in degrees Fahrenheit to 

tenths; WDSP is the mean wind speed for the day in knots to tenths; WDSPmph=WDSP*1.15077945 converting knots to mph. 

 
b
Temperature data were obtained for the Chicago O’Hare International Airport. http://www.ncdc.noaa.gov/oa/land.html The National Climatic Data Center (NCDC) is 

part of the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Department of Commerce. 

 
c
Public holidays include New Year's Day, Birthday of Martin Luther King, Jr., Washington's Birthday, Memorial Day, Independence Day, Labor Day, Columbus Day, 

Veterans Day, Thanksgiving Day, and Christmas Day. Since most Federal employees work on a Monday through Friday schedule, when a holiday falls on a 

nonworkday such as a Saturday or Sunday, the holiday usually is observed on Monday (if the holiday falls on Sunday) or Friday (if the holiday falls on Saturday). The 

actual day the holiday is “observed” (as opposed to the actual day the holiday falls on) is included in the holiday dummy variable in our weekday model. 

http://www.opm.gov/Operating_Status_Schedules/fedhol/2009.asp 
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TABLE 4. PARAMETER ESTIMATES AND DIAGNOSTIC STATISTICS FOR THE FULL-WEEK MODEL  

 

                                                                                                                                                                                                                                                                   (5) 

 

Houra                
Adj. 

R2 QLB(5)b QLB(6) 

1 9.5170 -0.0348 0.0127 0.0129 -0.0469 -0.0122 0.0001 -0.0086 0.0001 0.0007 0.0009 0.0010 1.5426 -0.5471 -0.9005 0.89 0.314 0.509 

2 9.4969 -0.0216 0.0189 0.0181 -0.0444 -0.0127 0.0001 -0.0078 0.0001 0.0006 0.0009 0.0009 1.5649 -0.5692 -0.9051 0.89 0.403 0.589 

3 9.4856 -0.0077 0.0269 0.0248 -0.0444 -0.0130 0.0001 -0.0070 0.0001 0.0006 0.0008 0.0009 1.5959 -0.5997 -0.9113 0.90 0.276 0.415 

4 9.4796 0.0167 0.0456 0.0418 -0.0496 -0.0129 0.0001 -0.0062 0.0001 0.0007 0.0008 0.0009 1.6189 -0.6225 -0.9160 0.90 0.119 0.230 

5 9.4789 0.0646 0.0910 0.0842 -0.0651 -0.0125 0.0001 -0.0052 0.0001 0.0007 0.0008 0.0008 1.6157 -0.6192 -0.9152 0.90 0.098 0.200 

6 9.4857 0.1274 0.1558 0.1450 -0.0898 -0.0119 0.0001 -0.0043 0.0001 0.0009 0.0008 0.0008 1.5419 -0.5457 -0.9081 0.89 0.283 0.453 

7 9.4980 0.1519 0.1805 0.1693 -0.1103 -0.0117 0.0001 -0.0036 0.0000 0.0010 0.0010 0.0009 1.5017 -0.5061 -0.9157 0.89 0.168 0.312 

8 9.5289 0.1385 0.1627 0.1523 -0.1148 -0.0122 0.0001 -0.0032 0.0000 0.0011 0.0010 0.0009 1.4887 -0.4937 -0.9198 0.89 0.122 0.236 

9 9.5487 0.1224 0.1418 0.1319 -0.1121 -0.0128 0.0002 -0.0028 0.0000 0.0012 0.0011 0.0010 1.4871 -0.4923 -0.9201 0.89 0.097 0.197 

10 9.5559 0.1196 0.1364 0.1259 -0.1054 -0.0135 0.0002 -0.0021 0.0000 0.0012 0.0012 0.0010 1.4970 -0.5024 -0.9253 0.90 0.084 0.170 

11 9.5487 0.1217 0.1371 0.1251 -0.0923 -0.0142 0.0002 -0.0016 0.0000 0.0013 0.0013 0.0010 1.4879 -0.4940 -0.9235 0.90 0.021 0.045 

12 9.5342 0.1283 0.1429 0.1289 -0.0785 -0.0147 0.0002 -0.0012 0.0000 0.0014 0.0014 0.0011 1.4821 -0.4888 -0.9233 0.90 0.022 0.040 

13 9.5146 0.1453 0.1604 0.1448 -0.0623 -0.0151 0.0002 -0.0010 0.0000 0.0014 0.0014 0.0011 1.4649 -0.4728 -0.9198 0.90 0.019 0.023 

14 9.4987 0.1484 0.1640 0.1470 -0.0522 -0.0153 0.0002 -0.0006 0.0000 0.0015 0.0014 0.0011 1.4545 -0.4635 -0.9131 0.90 0.014 0.009 

15 9.4848 0.1473 0.1626 0.1431 -0.0447 -0.0153 0.0002 -0.0002 0.0000 0.0015 0.0014 0.0010 1.4403 -0.4506 -0.8994 0.90 0.005 0.001 

16 9.4905 0.1414 0.1563 0.1348 -0.0357 -0.0152 0.0002 0.0004 0.0000 0.0016 0.0014 0.0010 1.4184 -0.4283 -0.8698 0.88 0.002 0.001 

17 9.5154 0.1347 0.1478 0.1238 -0.0237 -0.0154 0.0002 0.0008 0.0000 0.0017 0.0013 0.0010 1.4033 -0.4117 -0.8466 0.87 0.000 0.000 

18 9.5295 0.1260 0.1390 0.1120 -0.0162 -0.0154 0.0002 0.0012 0.0000 0.0017 0.0014 0.0010 1.4215 -0.4291 -0.8530 0.86 0.000 0.000 

19 9.5357 0.1234 0.1351 0.1027 -0.0073 -0.0150 0.0002 0.0013 0.0000 0.0015 0.0012 0.0009 1.4376 -0.4447 -0.8704 0.85 0.000 0.000 

20 9.5398 0.1169 0.1283 0.0917 -0.0040 -0.0143 0.0002 0.0013 0.0000 0.0012 0.0010 0.0009 1.4439 -0.4533 -0.8821 0.85 0.000 0.000 

21 9.5177 0.1023 0.1141 0.0849 -0.0031 -0.0138 0.0002 0.0012 0.0000 0.0013 0.0011 0.0009 1.4321 -0.4443 -0.8758 0.85 0.000 0.001 

22 9.4650 0.0766 0.0891 0.0712 -0.0069 -0.0137 0.0002 0.0012 0.0000 0.0013 0.0012 0.0010 1.4185 -0.4306 -0.8701 0.85 0.000 0.000 

23 9.5919 -0.0668 0.0030 0.0050 -0.0605 -0.0108 0.0001 -0.0097 0.0001 0.0007 0.0009 0.0010 1.4730 -0.4790 -0.8832 0.89 0.029 0.068 

24 9.5470 -0.0502 0.0065 0.0079 -0.0509 -0.0116 0.0001 -0.0092 0.0001 0.0007 0.0009 0.0010 1.5039 -0.5091 -0.8909 0.89 0.101 0.198 

Notes:  Estimation sample includes the period 05/04/2004 – 04/30/2008, n=1458. No highlight indicates parameter is statistically significant beyond the 1% level. Pink indicates parameter is statistically significant beyond the 

5% level. Green indicates parameter is statistically significant beyond the 10% level. Blue indicates parameter is not statistically significant at conventional levels of significance.  

 
a
Hours are based on Central Standard Time (CST), e.g., 2=2AM-3AM CST 

 
b
QLB is the Ljung-Box  test for autocorrelation, and the p-values for the Ljung-Box test for autocorrelation up to order 5 and 6 are reported. However it should be noted that Dezhbakhsh (1990) finds the application of the 

Ljung-Box test to be inadequate when applied to linear models with lagged dependent variables and exogenous regressors (e.g., ARMAX models). However, since these statistics are still reported in the recent load forecasting 

literature, we provide them here for readers.  The Ljung-Box Q-statistic at lag k is a test statistic for the null hypothesis that there is no autocorrelation up to order k (EViews 2008; Ljung and Box 1978). 

 where τj is the j-th autocorrelation and T is the number of observations (EViews 2008). 
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TABLE 5. ONE-STEP
A
 AHEAD OUT-OF-SAMPLE FORECASTING RESULTS FOR EACH HOUR FOR THE FULL-WEEK MODEL 

FOR MAY 1, 2008 THROUGH SEPTEMBER 30, 2009 

Model 
                                                                            (5)                                                                                                          

Hour
b
 Root Mean Squared Error

c
 Mean Absolute Error

d 
Mean Absolute Percent Error

e 

1 447.62 313.61 3.18 

2 413.46 289.68 3.03 

3 393.99 276.50 2.93 

4 387.01 270.29 2.84 

5 423.12 296.07 3.00 

6 521.11 352.11 3.36 

7 591.57 389.39 3.53 

8 610.56 402.92 3.50 

9 622.70 419.20 3.50 

10 649.01 444.76 3.59 

11 674.78 474.24 3.75 

12 706.50 500.24 3.91 

13 752.08 530.99 4.13 

14 785.74 556.38 4.32 

15 826.95 592.92 4.58 

16 863.19 624.08 4.78 

17 878.04 639.18 4.86 

18 857.29 621.46 4.77 

19 820.15 592.54 4.57 

20 785.92 559.92 4.30 

21 746.32 529.89 4.18 

22 684.32 485.31 4.09 

23 529.68 371.97 3.40 

24 486.04 339.72 3.31 
Notes: The adjusted estimation sample includes the period 05/04/2004 – 04/30/2008, n=1458; the forecast sample includes the period 05/01/2008 – 09/30/2009, n=518. EViews 6 software package was used for 
the estimation and forecasts. One-step ahead static forecasts were employed to forecast the level of the series. The static method was used be it calculates a sequence of one-step ahead forecasts, using the actual, 

rather than forecasted values for lagged dependent variables. 

 
aOne-step ahead refers to the sectional data, which is daily. Since the primary data are hourly, one must interpret it as 24-steps ahead, so that one-daily-step ahead actually corresponds to 24-hourly-steps ahead.  

 
bHours are based on Central Standard Time (CST), e.g., 2=2AM-3AM CST 
 
cRoot Mean Squared Error (RMSE) =  where yt is the actual value in period t and  is the forecasted value in period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 

 
dMean Absolute Error (MAE) =  where yt is the actual value in period t and  is the forecasted value in period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 
 
eMean Absolute Percentage Error (MAPE) =  where yt is the actual value in period t and  is the forecasted value in period t, and the forecast sample is j=T+1,…, T+h (EViews 2008). 
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TABLE 6. PARAMETER ESTIMATES AND DIAGNOSTIC STATISTICS FOR THE WEEKDAY MODEL 

    (6) 

Houra          Adj. R2 QLB(5)b QLB(6) QLB(7) 

1  9.4569 -0.0519 0.0007 0.0038 -0.0157 0.0002 1.3739 -0.3929 -0.8320 0.83 0.066 0.105 0.178 

 (0.0258) (0.0044) (0.0037) (0.0090) (0.0011) (0.0000) (0.0618) (0.0574) (0.0395)     

2 9.4404 -0.0429 0.0014 -0.0032 -0.0156 0.0002 1.4020 -0.4196 -0.8354 0.83 0.064 0.098 0.160 
 (0.0254) (0.0042) (0.0035) (0.0084) (0.0011) (0.0000) (0.0616) (0.0575) (0.0399)     

3 9.4365 -0.0346 0.0025 -0.0098 -0.0154 0.0002 1.4350 -0.4512 -0.8410 0.84 0.065 0.099 0.167 

 (0.0251) (0.0039) (0.0032) (0.0083) (0.0011) (0.0000) (0.0609) (0.0569) (0.0401)     

4 9.4509 -0.0251 0.0040 -0.0264 -0.0148 0.0002 1.4650 -0.4802 -0.8448 0.84 0.048 0.077 0.134 

 (0.0246) (0.0037) (0.0030) (0.0080) (0.0010) (0.0000) (0.0601) (0.0562) (0.0407)     

5 9.4949 -0.0148 0.0071 -0.0622 -0.0137 0.0001 1.4999 -0.5129 -0.8602 0.83 0.065 0.096 0.164 

 (0.0240) (0.0036) (0.0029) (0.0098) (0.0010) (0.0000) (0.0563) (0.0527) (0.0388)     

6 9.5693 -0.0056 0.0112 -0.1184 -0.0126 0.0001 1.5014 -0.5117 -0.8802 0.81 0.384 0.473 0.642 
 (0.0255) (0.0039) (0.0030) (0.0138) (0.0010) (0.0000) (0.0465) (0.0438) (0.0318)     

7 9.6125 -0.0008 0.0117 -0.1537 -0.0121 0.0001 1.4748 -0.4872 -0.8820 0.79 0.926 0.763 0.796 

 (0.0245) (0.0041) (0.0030) (0.0172) (0.0009) (0.0000) (0.0465) (0.0432) (0.0314)     

8 9.6365 0.0031 0.0111 -0.1539 -0.0126 0.0001 1.4263 -0.4444 -0.8628 0.81 0.984 0.793 0.703 

 (0.0230) (0.0039) (0.0028) (0.0184) (0.0009) (0.0000) (0.0513) (0.0467) (0.0356)     

9 9.6474 0.0064 0.0106 -0.1419 -0.0133 0.0002 1.3915 -0.4118 -0.8490 0.84 0.674 0.580 0.495 

 (0.0236) (0.0038) (0.0027) (0.0182) (0.0010) (0.0000) (0.0522) (0.0475) (0.0371)     
10 9.6561 0.0091 0.0113 -0.1319 -0.0139 0.0002 1.3791 -0.4003 -0.8478 0.86 0.182 0.213 0.239 

 (0.0246) (0.0039) (0.0028) (0.0176) (0.0010) (0.0000) (0.0516) (0.0467) (0.0379)     

11 9.6569 0.0114 0.0128 -0.1233 -0.0146 0.0002 1.3646 -0.3862 -0.8485 0.87 0.155 0.292 0.425 

 (0.0259) (0.0042) (0.0030) (0.0172) (0.0011) (0.0000) (0.0506) (0.0456) (0.0373)     

12 9.6529 0.0143 0.0148 -0.1203 -0.0151 0.0002 1.3514 -0.3737 -0.8495 0.88 0.254 0.368 0.527 

 (0.0269) (0.0044) (0.0032) (0.0173) (0.0012) (0.0000) (0.0503) (0.0454) (0.0366)     

13  9.6523 0.0163 0.0163 -0.1263 -0.0155 0.0002 1.3281 -0.3516 -0.8473 0.88 0.522 0.562 0.718 

 (0.0279) (0.0047) (0.0035) (0.0182) (0.0012) (0.0000) (0.0511) (0.0460) (0.0363)     
14 9.6453 0.0177 0.0177 -0.1288 -0.0158 0.0002 1.3132 -0.3374 -0.8440 0.88 0.595 0.650 0.791 

 (0.0292) (0.0050) (0.0037) (0.0184) (0.0013) (0.0000) (0.0515) (0.0464) (0.0362)     

15 9.6346 0.0209 0.0202 -0.1296 -0.0157 0.0002 1.2951 -0.3200 -0.8330 0.87 0.661 0.693 0.817 

 (0.0304) (0.0053) (0.0038) (0.0186) (0.0013) (0.0000) (0.0524) (0.0474) (0.0365)     

16 9.6419 0.0232 0.0221 -0.1266 -0.0155 0.0002 1.2840 -0.3046 -0.8105 0.86 0.634 0.534 0.701 

 (0.0342) (0.0054) (0.0039) (0.0182) (0.0014) (0.0000) (0.0519) (0.0484) (0.0352)     

17 9.6641 0.0267 0.0244 -0.1195 -0.0157 0.0002 1.2792 -0.2955 -0.7905 0.84 0.467 0.250 0.359 

 (0.0391) (0.0054) (0.0039) (0.0173) (0.0014) (0.0000) (0.0535) (0.0508) (0.0355)     
18 9.6721 0.0292 0.0272 -0.1143 -0.0157 0.0002 1.2939 -0.3094 -0.7974 0.82 0.590 0.333 0.464 

 (0.0382) (0.0054) (0.0038) (0.0169) (0.0014) (0.0000) (0.0550) (0.0522) (0.0378)     

19 9.6685 0.0351 0.0325 -0.1078 -0.0153 0.0002 1.3108 -0.3250 -0.8283 0.80 0.588 0.497 0.647 

 (0.0363) (0.0052) (0.0037) (0.0159) (0.0014) (0.0000) (0.0543) (0.0518) (0.0341)     

20 9.6602 0.0392 0.0367 -0.1030 -0.0148 0.0002 1.3114 -0.3293 -0.8423 0.81 0.610 0.602 0.682 

 (0.0321) (0.0049) (0.0034) (0.0150) (0.0014) (0.0000) (0.0562) (0.0529) (0.0345)     

21 9.6323 0.0299 0.0290 -0.0934 -0.0145 0.0002 1.2839 -0.3078 -0.8223 0.82 0.842 0.817 0.812 
 (0.0305) (0.0049) (0.0034) (0.0138) (0.0014) (0.0000) (0.0611) (0.0564) (0.0386)     

22 9.5690 0.0157 0.0174 -0.0797 -0.0144 0.0002 1.2765 -0.3003 -0.8128 0.82 0.941 0.857 0.900 

 (0.0306) (0.0047) (0.0034) (0.0122) (0.0014) (0.0000) (0.0632) (0.0585) (0.0390)     

23 9.5306 -0.0775 -0.0005 0.0128 -0.0152 0.0002 1.3203 -0.3428 -0.8236 0.82 0.098 0.159 0.242 

 (0.0263) (0.0048) (0.0042) (0.0093) (0.0011) (0.0000) (0.0625) (0.0573) (0.0402)     

24 9.4857 -0.0633 -0.0001 0.0101 -0.0156 0.0002 1.3485 -0.3690 -0.8284 0.82 0.048 0.079 0.134 

 (0.0260) (0.0046) (0.0039) (0.0091) (0.0011) (0.0000) (0.0623) (0.0575) (0.0397)     
Notes: Newey-West heteroskedasticity and autocorrelation robust standard errors are in parentheses (Newey and West 1994). Estimation sample includes the period 05/05/2004 – 04/30/2008, n=1041. No highlight indicates parameter is statistically significant 

beyond the 1% level. Pink indicates parameter is statistically significant beyond the 5% level. Green indicates parameter is statistically significant beyond the 10% level. Blue indicates parameter is not statistically significant at conventional levels of 

significance. Yellow indicates residuals are not white noise. 

 
a
Hours are based on Central Standard Time (CST), e.g., 2=2AM-3AM CST 

 
b
QLB is the Ljung-Box  test for autocorrelation, and the p-values for the Ljung-Box test for autocorrelation up to order 5, 6, and 7 are reported. However it should be noted that Dezhbakhsh (1990) finds the application of the Ljung-Box test to be inadequate 

when applied to linear models with lagged dependent variables and exogenous regressors (e.g., ARMAX models). However, since these statistics are still reported in the recent load forecasting literature, we provide them here for readers. The Ljung-Box Q-

statistic at lag k is a test statistic for the null hypothesis that there is no autocorrelation up to order k (EViews 2008; Ljung and Box 1978).  where τj is the j-th autocorrelation and T is the number of observations (EViews 2008).  
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TABLE 7. PARAMETER ESTIMATES AND DIAGNOSTIC STATISTICS FOR THE WEEKDAY AND WEEKNIGHT MODELS 

    (6) 

                                                                                                                                                                                       

Houra 
                 

Adj. 

R2 QLB(5)b QLB(6) QLB(7) 

1  9.47 - 0.05 0.05 - - -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 - 1.40 -0.41 -0.85 0.87 0.20 0.35 0.51 

 (0.04)  (0.00) (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.06) (0.05) (0.03)     

2 9.46 - 0.04 0.04 - - -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 - 1.43 -0.44 -0.86 0.87 0.26 0.44 0.61 

 (0.04)  (0.00) (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.05) (0.05) (0.03)     

3 9.46 - 0.04 0.03 - - -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 - 1.47 -0.48 -0.87 0.87 0.24 0.42 0.58 

 (0.04)  (0.00) (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.05) (0.05) (0.03)     

4 9.47 - 0.03 0.03 - - -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 - 1.51 -0.52 -0.88 0.86 0.21 0.37 0.52 

 (0.04)  (0.00) (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.05) (0.04) (0.03)     
5 9.52 - 0.03 0.02 - - -0.01 0.00 0.00 0.00 0.00 0.00 0.00 - 1.53 -0.53 -0.89 0.84 0.18 0.31 0.44 

 (0.04)  (0.00) (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.04) (0.04) (0.03)     

6 9.57 -0.01 0.01 - -0.01 0.00 - - - - - - - -0.12 1.50 -0.51 -0.88 0.81 0.38 0.47 0.64 

 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.01) (0.05) (0.04) (0.03)     

7 9.61 0.00 0.01 - -0.01 0.00 - - - - - - - -0.15 1.47 -0.49 -0.88 0.79 0.93 0.76 0.80 

 (0.02) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.04) (0.03)     

8 9.64 0.00 0.01 - -0.01 0.00 - - - - - - - -0.15 1.43 -0.44 -0.86 0.81 0.98 0.79 0.70 
 (0.02) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

9 9.65 0.01 0.01 - -0.01 0.00 - - - - - - - -0.14 1.39 -0.41 -0.85 0.84 0.67 0.58 0.50 

 (0.02) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

10 9.66 0.01 0.01 - -0.01 0.00 - - - - - - - -0.13 1.38 -0.40 -0.85 0.86 0.18 0.21 0.24 

 (0.02) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

11 9.66 0.01 0.01 - -0.01 0.00 - - - - - - - -0.12 1.36 -0.39 -0.85 0.87 0.16 0.29 0.43 

 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

12 9.65 0.01 0.01 - -0.02 0.00 - - - - - - - -0.12 1.35 -0.37 -0.85 0.88 0.25 0.37 0.53 
 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

13  9.65 0.02 0.02 - -0.02 0.00 - - - - - - - -0.13 1.33 -0.35 -0.85 0.88 0.52 0.56 0.72 

 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

14  9.65 0.02 0.02 - -0.02 0.00 - - - - - - - -0.13 1.31 -0.34 -0.84 0.88 0.60 0.65 0.79 

 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

15  9.63 0.02 0.02 - -0.02 0.00 - - - - - - - -0.13 1.30 -0.32 -0.83 0.87 0.66 0.69 0.82 

 (0.03) (0.01) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

16  9.64 0.02 0.02 - -0.02 0.00 - - - - - - - -0.13 1.28 -0.30 -0.81 0.86 0.63 0.53 0.70 
 (0.03) (0.01) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

17  9.66 0.03 0.02 - -0.02 0.00 - - - - - - - -0.12 1.28 -0.30 -0.79 0.84 0.47 0.25 0.36 

 (0.04) (0.01) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.04)     

18  9.67 0.03 0.03 - -0.02 0.00 - - - - - - - -0.11 1.29 -0.31 -0.80 0.82 0.59 0.33 0.46 

 (0.04) (0.01) (0.00)  (0.00) (0.00)        (0.02) (0.06) (0.05) (0.04)     

19  9.67 0.04 0.03 - -0.02 0.00 - - - - - - - -0.11 1.31 -0.33 -0.83 0.80 0.59 0.50 0.65 

 (0.04) (0.01) (0.00)  (0.00) (0.00)        (0.02) (0.05) (0.05) (0.03)     
20  9.66 0.04 0.04 - -0.01 0.00 - - - - - - - -0.10 1.31 -0.33 -0.84 0.81 0.61 0.60 0.68 

 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.02) (0.06) (0.05) (0.03)     

21 9.63 0.03 0.03 - -0.01 0.00 - - - - - - - -0.09 1.28 -0.31 -0.82 0.82 0.84 0.82 0.81 

 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.01) (0.06) (0.06) (0.04)     

22 9.57 0.02 0.02 - -0.01 0.00 - - - - - - - -0.08 1.28 -0.30 -0.81 0.82 0.94 0.86 0.90 

 (0.03) (0.00) (0.00)  (0.00) (0.00)        (0.01) (0.06) (0.06) (0.04)     

23 9.51 - 0.07 0.07 - - -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 - 1.33 -0.35 -0.84 0.87 0.19 0.33 0.49 

 (0.04)  (0.00) (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.06) (0.06) (0.03)     
24 9.48 - 0.06 0.06 - - -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 - 1.37 -0.38 -0.84 0.87 0.16 0.30 0.45 

 (0.04)  (0.00) (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.06) (0.06) (0.03)     
Notes: Newey-West heteroskedasticity and autocorrelation robust standard errors are in parentheses (Newey and West 1994). Estimation sample includes the period 05/05/2004 – 04/30/2008, n=1041. No highlight indicates parameter is statistically significant beyond the 1% level. 

Pink indicates parameter is statistically significant beyond the 5% level. Green indicates parameter is statistically significant beyond the 10% level. Blue indicates parameter is not statistically significant at conventional levels. 

 
aHours are based on Central Standard Time (CST), e.g., 2=2AM-3AM CST  

 

bQLB is the Ljung-Box  test for autocorrelation, and the p-values for the Ljung-Box test for autocorrelation up to order 5, 6, and 7 are reported. However it should be noted that Dezhbakhsh (1990) finds the applicat ion of the Ljung-Box test to be inadequate when applied to linear 

models with lagged dependent variables and exogenous regressors (e.g., ARMAX models). However, since these statistics are still reported in the recent load forecasting literature, we provide them here for readers. The Ljung-Box Q-statistic at lag k is a test statistic for the null 

hypothesis that there is no autocorrelation up to order k (EViews 2008; Ljung and Box 1978).  where τj is the j-th autocorrelation and T is the number of observations (EViews 2008). 
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TABLE 8. ONE-STEP
A
 AHEAD OUT-OF-SAMPLE FORECASTING RESULTS FOR EACH HOUR OF THE WEEKDAY FOR MAY 1, 

2008 THROUGH SEPTEMBER 30, 2009 

Model 
(6) 

(6) 

    (7)
c
 

Hour
b
 RMSE

d 
MAE

e
 MAPE

f
 RMSE MAE MAPE 

1 522.84 377.41 3.81 464.22 327.32 3.33 

2 477.16 345.18 3.58 432.07 304.85 3.19 

3 453.96 328.00 3.44 418.83 294.98 3.11 

4 441.78 316.96 3.27 417.12 290.18 3.01 

5 461.01 334.28 3.28 464.22 322.74 3.19 

6 527.78 379.52 3.42 527.78 379.52 3.42 

7 574.86 410.12 3.46 574.86 410.12 3.46 

8 590.51 417.20 3.37 590.51 417.20 3.37 

9 606.00 429.79 3.34 606.00 429.79 3.34 

10 637.61 453.17 3.41 637.61 453.17 3.41 

11 672.36 481.94 3.57 672.36 481.94 3.57 

12 713.00 514.31 3.76 713.00 514.31 3.76 

13 757.39 544.54 3.95 757.39 544.54 3.95 

14 791.41 566.67 4.11 791.41 566.67 4.11 

15 832.21 596.49 4.33 832.21 596.49 4.33 

16 873.28 621.40 4.47 873.28 621.40 4.47 

17 888.29 632.85 4.54 888.29 632.85 4.54 

18 875.49 623.29 4.54 875.49 623.29 4.54 

19 833.53 598.44 4.41 833.53 598.44 4.41 

20 794.28 567.26 4.18 794.28 567.26 4.18 

21 759.24 540.57 4.11 759.24 540.57 4.11 

22 692.53 495.09 4.05 692.53 495.09 4.05 

23 643.76 462.34 4.20 546.48 389.21 3.57 

24 578.96 413.56 4.00 502.09 353.94 3.46 
Notes: The superior forecasting model (e.g., lowest MAPE) is indicated by the bold type. The adjusted estimation sample includes the period 05/05/2004 – 04/30/2008, n=1041; the forecast sample includes the period 

05/01/2008 – 09/30/2009, n=370. EViews 6 software package was used for the estimation and forecasts. One-step ahead static forecasts were employed to forecast the level of the series. The static method was used be it 
calculates a sequence of one-step ahead forecasts, using the actual, rather than forecasted values for lagged dependent variables. 

 
a
One-step ahead refers to the sectional data, which is daily. Since the primary data are hourly, one must interpret it as 24-steps ahead, so that one-daily-step ahead actually corresponds to 24-hourly-steps ahead. Since we have 

removed weekends from the models estimated here, the one-step ahead forecasts made on a Friday will actually be forecasting Monday’s load, thus in some sense three-days ahead (72-hours ahead) forecasts are being made. 

  
b
 Hours are based on Central Standard Time (CST), e.g., 2=2AM-3AM CST 

 
c
The night load model is used to estimate hours 1-5, 23, and 24.  

 
d
Root Mean Squared Error (RMSE) =  where yt is the actual value in period t and  is the forecasted value in period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 

 
e
Mean Absolute Error (MAE) =  where yt is the actual value in period t and  is the forecasted value in period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 

 
f
Mean Absolute Percentage Error (MAPE) =  where yt is the actual value in period t and  is the forecasted value in period t, and the forecast sample is j=T+1, T+2, …, T+h (EViews 2008). 
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VIII. FIGURES 
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Figure 1. Load for each hour from May 1, 2004 through April 30, 2008 (in-sample period)
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Figure 2. Load for each weekday hour from May 3, 2004 through April 30, 2008 (in-sample period)
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Figure 3a. Commonwealth Edison 5PM-6PM daily system-wide load versus average

daily air temperature from May 1, 2004 through April 30, 2008 using full week data
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Figure 3b. Commonwealth Edison 5PM-6PM daily system-wide load versus average

daily air temperature from May 3, 2004 through April 30, 2008 using weekday data



47 

 

8,000

12,000

16,000

20,000

24,000

-20 0 20 40 60 80 100

Temperature [degrees Fahrenheit]

H
7
A

M
8
A

M
 [

h
o
u
rl

y
 l

o
a
d
 i

n
 M

e
g
a
w

a
tt

-h
o
u
rs

]

Figure 3c. Commonwealth Edison 7AM-8AM daily system-wide load versus average

daily air temperature from May 1, 2004 through April 30, 2008 using full week data
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Figure 3d. Commonwealth Edison 7AM-8AM daily system-wide load versus average

daily air temperature from May 3, 2004 through April 30, 2008 using weekday data



48 

REFERENCES 

 

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic 

Control 19:716-23. 

 

Akaike, H. 1987. Factor Analysis and AIC. Psychometrika 52 (3): 317–32. 

 

Alfares, H. K., and M. Nazeeruddin. 2002. Electric load forecasting: Literature survey and classification of 

methods. International Journal of Systems Science 33 (1): 23-34. 

 

Amaral, L. F., R. C. Souza, and M. Stevenson. 2008. A smooth transition periodic autoregressive (STPAR) 

model for short-term load forecasting. International Journal of Forecasting 24:603-615. 

 

Amjady, N., and A. Daraeepour. 2009. Mixed price and load forecasting of electricity markets by a new 

iterative prediction method. Electric Power Systems Research 79 (9): 1329-36. 

 

Associated Press. 2007. The associated press stylebook: Stylebook and briefing on media law. 42nd ed., ed. 

N. Goldstein. New York: Basic Books. 

 

Box, G. E. P., and G. M. Jenkins. 1970. Time-series analysis: Forecasting and control. Rev. ed. San 

Francisco: Holden-Day. 

 

Bruhns, A., G. Deurveilher, and J. Roy. 2005. A nonlinear regression model for mid term load forecasting 

and improvements in seasonality. 15
th

 Power Systems Computation Conference.  

 

Bunn, D. W., and E. D. Farmer, eds. 1985a. Economic and operational context of electric load prediction. 

In Comparative models for electrical load forecasting, 3-11. New York: John Wiley and Sons. 

 

Bunn, D. W., and E. D. Farmer, eds. 1985b. Review of short-term forecasting methods in the electric power 

industry. In Comparative models for electrical load forecasting, 13-30. New York: John Wiley and 

Sons. 

 

Carpinteiro, O., A. Reis, and A. Silva. 2004. A hierarchical neural model in short-term load forecasting. 

Applied Soft Computing 4:405-12. 

 

Chatfield, C. 2001. Time-series forecasting. Boca Raton, FL: Chapman and Hall/CRC Press. 

 

Chen, T. 1997. Long-term peak electricity load forecasting in Taiwan: A cointegration analysis. Pacific and 

Asian Journal of Energy 7 (1): 63-73. 

 

Chen, K., and L. Wang, eds. 2007. Trends in neural computation. Vol. 35 of Studies in computational 

intelligence. New York: Springer. 

 

Cottet, R., and M. Smith. 2003. Bayesian modeling and forecasting of intraday electricity load. Journal of 

the American Statistical Association 98 (464): 839-49. 



49 

 

Darbellay, G. A., and M. Slama. 2000. Forecasting the short-term demand for electricity: Do neural 

networks stand a better chance? International Journal of Forecasting 16 (1): 71-83. 

 

Dezhbakhsh, H. 1990. The inappropriate use of serial correlation tests in dynamic linear models. Review of 

Economics and Statistics 72 (1): 126-32. 

 

Dickey, D. A., and W. A. Fuller. 1979. Distribution of estimator for autoregressive time series with a unit 

root. Journal of American Statistical Association 74 (366): 427-31. 

 

Dickey, D. A., and W. A. Fuller. 1981. Likelihood ratio statistics for autoregressive time series with a unit 

root. Econometrica 49 (4): 1057-72. 

 

Diebold, F. X. 2007. Elements of forecasting. 4th ed. Mason, OH: Thomson South-Western. 

 

Energy Information Administration (EIA). 2009. State energy profiles: Illinois. 

http://tonto.eia.doe.gov/state/state_energy_profiles.cfm?sid=IL (accessed November 12, 2009). 

 

Engle, R. F., C. Mustafa, and J. Rice. 1992. Modelling peak electricity demand. Journal of Forecasting 

11:241-51. 

 

EViews. 2008. Quantitative Micro Software. Version 6. CD-ROM. 

 

Feinberg, E. A., and D. Genethliou. 2005. Load forecasting. In Applied mathematics for power systems: 

Optimization, control, and computational intelligence, eds. J. H. Chow, F. F. Wu, and J. A. Momoh, 

269-85. New York: Springer. 

 

Fidalgo, J., and M. A. Matos. 2007. Forecasting Portugal global load with artificial neural networks. In 

Artificial neural networks, ICANN 2007, eds. J. Marques de Sá et al., 4669 (2): 728-37. New York: 

Springer. 

 

Fiebig, D. G., R. Bartels, and D. J. Aigner. 1991. A random coefficient approach to the estimation of 

residential end-use load profiles. Journal of Econometrics 50:297-327. 

 

Granger, C. W. J. 1980. Forecasting in business and economics. New York: Academic Press.  

 

Gupta, P. C. 1985. Adaptive short-term forecasting of hourly loads using weather information. In 

Comparative models for electrical load forecasting, eds. D. W. Bunn and E. D. Farmer, 43-56. New 

York: John Wiley and Sons. 

 

Hahn, J., S. Meyer-Nieberg, and S. Pickl. 2009. Electric load forecasting methods: Tools for decision 

making. European Journal of Operational Research 199:902-7. 

 

Halvorsen, R., and R. Palmquist. 1980. The interpretation of dummy variables in semi-logarithmic 

equations. American Economic Review 70 (3): 474-5. 

 



50 

Heinemann, G., D. Nordman, and E. Plant. 1966. The relationship between summer weather and summer 

loads: A regression analysis. IEEE Transactions on Power Apparatus and Systems PAS 85:1144-54. 

 

Hippert, H. S., D. W. Bunn, and R. C. Souza. 2005. Large neural networks for electricity load forecasting: 

Are they overfitted? International Journal of Forecasting 21 (3): 425-34. 

 

Hippert, H. S., C. E. Pedreira, and R. C. Souza. 2001. Neural networks for short-term load forecasting: A 

review and evaluation. IEEE Transactions on Power Systems 16 (1): 44-55. 

 

Hor, C., J. Watson, and S. Majithia. 2005. Analyzing the impact of weather variables on monthly electricity 

demand. IEEE Transactions on Power Systems 20 (4): 2078-85. 

 

Kyriakides, E., and M. Polycarpou. 2007. Short term electric load forecasting: A tutorial. In Trends in 

neural computation, studies in computational intelligence, eds. K. Chen and L. Wang, 35:391-418. New 

York: Springer. 

 

Levenbach, H., and J. P. Cleary. 2006. Forecasting: Practice and process for demand management. 

Belmont, CA: Duxbury Thomson Brooks/Cole.  

 

Ljung, G. M., and G. E. P. Box. 1978. On a measure of lack of fit in time-series models. Biometrika 

65:297-303. 

 

Makridakis, S. G., S. C. Wheelwright, and R. J. Hyndman. 1998. Forecasting: Methods and applications. 

3rd ed. New York: John Wiley and Sons. 

 

McMenamin, J. S. 1997. A primer on neural networks for forecasting. The Journal of Business Forecasting 

Methods & Systems 16 (3): 17-22. 

 

National Climatic Data Center (NCDC). 2009. Climate Data Online, Federal Climate Complex Global 

Surface Summary of Day Data Version 7. ftp://ftp.ncdc.noaa.gov/pub/data/gsod (accessed November 

14, 2009). 

 

Newey, W., and K. West. 1994. Automatic lag selection in covariance matrix estimation. Review of 

Economic Studies 61:631-53. 

 

Pappas S. Sp., D. Ch. Ekonomou, G. E. Karamousantas, S. K. Chatzarakis, Katsikas, and P. Liatsis. 2008. 

Electricity demand loads modeling using autoregressive moving average (ARMA) models. Energy 33 

(9): 1353-60. 

 

Peirson, J., and A. Henley. 1994. Electricity load and temperature: Issues in dynamic specification. Energy 

Economics 16 (4): 235-43. 

 

Phillips, P., and P. Perron. 1988. Testing for a unit root in time series regression. Biometrika 75:335-46. 

 

Pindyck, R. S., and D. L. Rubinfeld. 1998. Econometric models and economic forecasts. 4th ed. Boston: 

Irwin McGraw-Hill. 



51 

PJM. 2009. Historical load data. http://www.pjm.com/markets-and-operations/compliance/nerc-

standards/historical-load-data.aspx (accessed November 3, 2009). 

 

PJM Resource Adequacy Planning. 2009. PJM manual 19: Load forecasting and analysis. Rev. 15. 

http://www.pjm.com/documents/~/media/documents/manuals/m19.ashx (accessed November 4, 2009). 

 

Ramanathan, R., R. Engle, C. W. J. Granger, F. Vahid-Araghi, and C. Brace. 1997. Short-run forecasts of 

electricity loads and peaks. International Journal of Forecasting 13:161-74.  

 

Schneider, A. M., T. Takenawa, and D. A. Schiffman. 1985. 24-Hour electric utility load forecasting. In 

Comparative models for electrical load forecasting, eds. D. W. Bunn and E. D. Farmer, 87-108. New 

York: John Wiley and Sons. 

 

Soares, L. J., and M. C. Medeiros. 2005. Modeling and forecasting short-term electric load demand: A two-

step methodology. Working Paper 495, Department of Economics, Pontifical Catholic University of Rio 

de Janeiro. 

 

Soares, L. J., and M. C. Medeiros. 2008. Modeling and forecasting short-term electricity load: A 

comparison of methods with an application to Brazilian data. International Journal of Forecasting 

24:630-44. 

 

Soares, L. J., and L. R. Souza. 2006. Forecasting electricity demand using generalized long memory. 

International Journal of Forecasting 22 (1): 17-28. 

 

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6:461-4. 

 

Taylor, J. W., and P. E. McSharry. Forthcoming. Short-term load forecasting methods: An evaluation based 

on European data. IEEE Transactions on Power Systems.  

 

Taylor, J. W., L. M. De Menezes, and P. E. McSharry. 2006. A comparison of univariate methods for 

forecasting electricity demand up to a day ahead. International Journal of Forecasting 22:1-16. 

 

University of Chicago Press. 2003. The Chicago manual of style. 15th ed. Chicago: University of Chicago 

Press. 

 

Wang, G. C. S. 2004. Forecasting practices in electric and gas utility companies. The Journal of Business 

Forecasting Methods & Systems 23 (1): 11-15. 

 

Weron, R. 2006. Modeling and forecasting electricity loads and prices: A statistical approach. Chichester: 

John Wiley and Sons. 

 

Weron, R., and A. Misiorek. 2004. Modeling and forecasting electricity loads: A comparison. In 

Proceedings of the European Electricity Market EEM-04 Conference, Łódź, 135-42.  

 

Wooldridge, J. M. 2009. Introductory econometrics: A modern approach. 4th ed. Mason, Ohio: South-

Western Cengage Learning.  


	Introduction
	Literature Review
	Classical Approach (Time Series and Regression)
	Modeling Trend
	Modeling Cyclicality
	ARMA Models
	ARMAX Models
	Weather Variables


	Modeling Seasonality

	Artificial Intelligence-Based Methods
	Conclusions from the Literature

	Theoretical Analysis
	Data
	Dependent Variable – Load
	Calendar Effects
	Weather Data

	Econometric Method and Forecasting Results
	Full-week
	Specification and Estimation Method
	Forecasting Results

	Weekdays
	Specification and Estimation Method
	An Example for Hour 17 (5pm6pm)
	Forecasting Results


	Summary and Conclusions
	Tables
	Figures
	References

