Coal Capacity at Risk for Retirement in PJM:
Potential Impacts of the Finalized EPA Cross State Air Pollution Rule and Proposed National Emissions Standards for Hazardous Air Pollutants

Paul M. Sotkiewicz, Ph.D.
Chief Economist
M. Gary Helm
Senior Market Strategist
PJM Interconnection
October 20, 2011
Stylized Summary of Environmentally Related Rules Impacting Resource Adequacy

<table>
<thead>
<tr>
<th>Pollutant or target issue</th>
<th>GHG Tailoring Rule</th>
<th>Cross State Air Pollution Rule</th>
<th>NESHAP</th>
<th>CWA 316(b)</th>
<th>High Electricity Demand Day</th>
<th>Renewable Portfolio Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ and other GHG</td>
<td>SO₂ and NOₓ annual limits NOₓ seasonal limit</td>
<td>Mercury, other Heavy Metals, and Acid Gases</td>
<td>Cooling water intake structures</td>
<td>Ozone formation from NOₓ on hot days</td>
<td>Ensure a certain percentage of renewables</td>
<td></td>
</tr>
<tr>
<td>All fossil units</td>
<td>All fossil units Primarily coal</td>
<td>Coal and oil, primarily coal</td>
<td>All existing units</td>
<td>Oil and gas peaking</td>
<td>All units</td>
<td></td>
</tr>
<tr>
<td>BACT case-by-case, state-by-state</td>
<td>Limited cap & trade. Use of FGD or DSI and SCR likely</td>
<td>MACT to be defined, likely FGD or DSI, ACI, fabric filter</td>
<td>BTA to be defined, likely not once thru cooling</td>
<td>NOₓ rate standard. Use of SCR and other controls likely</td>
<td>Mandated percentage of electricity sales from renewables</td>
<td></td>
</tr>
<tr>
<td>Mostly fixed costs</td>
<td>Fixed and variable costs – allowance prices</td>
<td>Mostly fixed costs, but also some VOM</td>
<td>Mostly fixed costs</td>
<td>Mostly fixed costs</td>
<td>Reduced net energy market revenues</td>
<td></td>
</tr>
</tbody>
</table>

www.pjm.com
PJM RTO
(MidAtlantic, AP, ComEd, AEP, Dayton, Duquesne, Dominion, & ATSI Regions)

Capacity By Fuel Type -- 177,579 MW installed generation capacity

- Natural Gas: 27,360 MW (16%)
- Gas Total Gen: 49,836 MW (11.7%)
- Oil: 14,923 MW (8.2%)
- Gas / Other Secondary: 19,396 MW (11%)
- Water: 7,821 MW (4.4%)
- Other: 2,382 MW (1.3%)
- Coal: 72,098 MW (41.1%)
- Nuclear: 33,600 MW (19.2%)

Percentage of 2010 Generation in parentheses
How Much Coal Generation is at Risk for Retirement?

- How many megawatts (MW) of coal-fired generation are at risk for retirement?
 - Proposed EPA rules would effectively require costly environmental retrofits or repowering to natural gas or force units to retire
 - How many coal units will retire, repower, or retrofit?
 - What is the current retrofit status of coal generation
 - What are the prospects for retaining existing coal units?
Big Question: What are the reliability implications of the CSAPR and NESHAP rules?

- **Resource adequacy**
 - Will there be sufficient resources to meet peak loads plus the installed reserve margin?

- **Local transmission reliability**
 - Will transmission upgrades be necessary to allow units to retire reliably?
 - Managing retrofit tie-in outages reliably
Key Takeaways

• Units more than 40 years old and less than 400 MW are the most at risk for retirement due to the CSAPR and NESHAP rules
 – This is about 30 percent of the current coal fleet in PJM

• 11,051 MW of coal requires more that the Net Cost of New Entry (Net CONE) of a natural gas combustion turbine to be economically viable under the CSAPR and NESHAP rules
 – On average these units are more than 50 years old and less than 200 MW and are considered at “high risk” for retirement
 – An additional 14,147 MW are at risk as they require between \(\frac{1}{2} \) Net CONE and Net CONE to be economically viable

• PJM anticipates resource adequacy over the entire RTO will be maintained

• Retirements may pose local reliability issues requiring transmission upgrades to ensure transmission and operating reliability
Environmental Regulations - Control Implications

Selective Non-Catalytic Reduction
- Lower cost but also lower removal rates

Selective Catalytic Reduction
- Reduces NO\textsubscript{x} and enhances mercury removal

Low NO\textsubscript{x} Burners
- Reduces NO\textsubscript{x}

Steam Generator
- High efficiency boiler produces less emissions per Megawatt output

Dry Sorbent Injection
- Lower capital cost
- Alternative to Wet Lime FGD, but higher operating cost
- Most proven for sub-bituminous coals

Activated Carbon Injection
- Removes mercury
- Then captured in Fabric Filter

Fabric Filter
- Captures particulate matter and mercury

Wet ESP
- Reduces fine particulate and sulfuric acid mist

Scrubber
- Removes SO\textsubscript{2} and mercury

Fabric Filter
- Captures particulate matter and mercury

Bottom Ash
- A by-product useful in concrete and other products, or stored

Coal & Pet Coke

Pulverizers

PC Boiler with Low NO\textsubscript{x} Combustion System

Economizer

SCR

NH\textsubscript{3} Injection

Air Heater

Limestone

Gypsum
- A by-product useful in wallboard

Scrubber
- Removes SO\textsubscript{2} and mercury

Fabric Filter
- Captures particulate matter and mercury

Fly Ash
- A by-product useful in concrete and other products, or stored

FD Fans

Chimney

Limestone

Gypsum
- A by-product useful in wallboard

Emission Monitoring
- Continuously monitors many types of emissions

Dry Sorbent Injection
- Lower capital cost
- Alternative to Wet Lime FGD, but higher operating cost
- Most proven for sub-bituminous coals

Cooling Towers
Total Coal Capacity in PJM without Pollution Controls

<table>
<thead>
<tr>
<th></th>
<th>PJM RTO</th>
<th>MAAC</th>
<th>Rest of PJM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coal</td>
<td>78,613</td>
<td>18,761</td>
<td>59,852</td>
</tr>
<tr>
<td>No SO₂ Controls</td>
<td>30,069</td>
<td>4,281</td>
<td>25,788</td>
</tr>
<tr>
<td>No SCR for NOₓ Reduction</td>
<td>36,618</td>
<td>8,805</td>
<td>27,813</td>
</tr>
<tr>
<td>No Fabric Filter</td>
<td>69,115</td>
<td>13,020</td>
<td>56,095</td>
</tr>
<tr>
<td>No SO₂ and No SCR</td>
<td>22,866</td>
<td>2,723</td>
<td>20,143</td>
</tr>
<tr>
<td>No SO₂ and No Fabric Filter</td>
<td>29,457</td>
<td>3,756</td>
<td>25,701</td>
</tr>
</tbody>
</table>

Inclusive of DEOK and ATSI
Pollution Control Retrofit Costs for a 500 MW Coal Unit vs. Costs of New Natural Gas Technologies

<table>
<thead>
<tr>
<th>Control Technology</th>
<th>Capital Cost ($/kW)</th>
<th>Fixed O&M ($/MW-yr)</th>
<th>Variable O&M ($/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD</td>
<td>$501</td>
<td>$8,150</td>
<td>$1.81</td>
</tr>
<tr>
<td>DSI</td>
<td>$40</td>
<td>$590</td>
<td>$7.92</td>
</tr>
<tr>
<td>SCR</td>
<td>$197</td>
<td>$720</td>
<td>$0.66</td>
</tr>
<tr>
<td>SNCR</td>
<td>$19</td>
<td>$260</td>
<td>$1.33</td>
</tr>
<tr>
<td>Fabric Filter + ACI</td>
<td>$155+$9</td>
<td>$630+$40</td>
<td>$0.15+$0.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Technology</th>
<th>Capital Cost ($/kW)</th>
<th>Fixed O&M ($/MW-yr)</th>
<th>Variable O&M ($/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Cycle CT</td>
<td>$665-$975</td>
<td>$6,700-$6,980</td>
<td>$9.87-$14.60</td>
</tr>
<tr>
<td>Combined Cycle CT</td>
<td>$1,000-$1,150</td>
<td>$21,600</td>
<td>$3.23</td>
</tr>
</tbody>
</table>
Coal Capacity Factors Inclusive of ATSI and DEOK

Average Capacity Factor

2007 2008 2009 2010

All Coal
<=40 Years
>40 Years
<400 MW
>=400 MW
>40 Years and <400 MW
National Average Annual Delivered Price of Coal and Natural Gas 2006-2010

Forecast Prices from EIA Annual Energy Outlook 2011

<table>
<thead>
<tr>
<th>Year</th>
<th>Gas</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$6.94</td>
<td>$1.69</td>
</tr>
<tr>
<td>2007</td>
<td>$7.11</td>
<td>$1.77</td>
</tr>
<tr>
<td>2008</td>
<td>$9.01</td>
<td>$2.07</td>
</tr>
<tr>
<td>2009</td>
<td>$4.74</td>
<td>$2.21</td>
</tr>
<tr>
<td>2010</td>
<td>$5.08</td>
<td>$2.26</td>
</tr>
<tr>
<td>2011</td>
<td>$4.94</td>
<td>$2.27</td>
</tr>
<tr>
<td>2012</td>
<td>$4.93</td>
<td>$2.23</td>
</tr>
<tr>
<td>2013</td>
<td>$5.00</td>
<td>$2.23</td>
</tr>
<tr>
<td>2014</td>
<td>$5.04</td>
<td>$2.24</td>
</tr>
<tr>
<td>2015</td>
<td>$5.23</td>
<td>$2.31</td>
</tr>
<tr>
<td>2016</td>
<td>$5.38</td>
<td>$2.31</td>
</tr>
</tbody>
</table>
Compliance Cost and Economic Environment: Key Takeaways

• Retrofits to comply with air rules are very costly putting pressure on fixed costs
 – Economies of scale to retrofit costs...cost/MW is higher for smaller units

• Significantly reduced gas-coal spreads and demand are adding pressure on the revenue side of the equation
 – Some controls also have significant variable costs and add to this pressure
 – Smaller, older units have lower revenues per MW

• Conjecture:
 – Older, smaller units will be at greater risk for retirement if they require retrofits
Unit Characteristics Screen: Key Takeaways
Units More than 40 Years Old and Less than 400 MW

<table>
<thead>
<tr>
<th></th>
<th>PJM</th>
<th>MAAC</th>
<th>Rest of PJM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>22,907</td>
<td>5,769</td>
<td>17,138</td>
</tr>
<tr>
<td>No SO₂ Controls</td>
<td>17,387</td>
<td>2,560</td>
<td>14,827</td>
</tr>
<tr>
<td>No Fabric Filter</td>
<td>20,104</td>
<td>3,729</td>
<td>16,375</td>
</tr>
<tr>
<td>No SO₂ Control and No Baghouse</td>
<td>16,775</td>
<td>2,035</td>
<td>14,740</td>
</tr>
<tr>
<td>No SCR</td>
<td>18,762</td>
<td>4,456</td>
<td>14,306</td>
</tr>
<tr>
<td>No SO₂ Control and No SCR</td>
<td>14,541</td>
<td>2,236</td>
<td>12,305</td>
</tr>
</tbody>
</table>
Necessary Revenue to Continue Operating under CSAPR and NESHAP

Required Revenues in $/MW\text{-}day of Installed Capacity

- Avg Rev Req Low Gas 09-10
- Avg Rev Req High Gas 07-08
- Avg Rev Req All Gas 07-10

0-100 MW
100-200 MW
200-300 MW
300-400 MW
400-500 MW
500-600 MW
600-700 MW
700-800 MW
>800 MW
Capacity with Needed Revenues under CSAPR and NESHAP

Benchmarked against Net CONE in MAAC

<table>
<thead>
<tr>
<th>MW of Installed Capacity</th>
<th><0.5 Net CONE</th>
<th>0.5-1.0 Net CONE</th>
<th>1.0 - 1.5 Net CONE</th>
<th>>1.5 Net CONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Yr High Gas</td>
<td>17,625.70</td>
<td>1,016.10</td>
<td>113.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20 Yr All Gas 07-10</td>
<td>14,194.70</td>
<td>3,543.00</td>
<td>888.00</td>
<td>129.10</td>
</tr>
<tr>
<td>20 Yr Low Gas</td>
<td>12,634.70</td>
<td>2,926.00</td>
<td>1,705.00</td>
<td>1,489.10</td>
</tr>
</tbody>
</table>

- 0.5 Net CONE (ICAP) = $113.40/MW-day
- Net CONE (ICAP) = $226.79/MW-day
- 1.5 Net CONE (ICAP) = $340.19/MW-day
Capacity with Needed Revenues under CSAPR and NESHAP
Benchmarked against Net CONE in Rest of RTO

- 0.5 Net CONE (ICAP) = $160.42/MW-day
- Net CONE (ICAP) = $320.84/MW-day
- 1.5 Net CONE (ICAP) = $481.26/MW-day

<table>
<thead>
<tr>
<th>MW of Installed Capacity</th>
<th><0.5 Net CONE</th>
<th>0.5-1.0 Net CONE</th>
<th>1.0 - 1.5 Net CONE</th>
<th>>1.5 Net CONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Yr High Gas</td>
<td>41,654.40</td>
<td>1,801.00</td>
<td>696.00</td>
<td>645.00</td>
</tr>
<tr>
<td>20 Yr All Gas 07-10</td>
<td>37,065.40</td>
<td>4,409.00</td>
<td>2,554.00</td>
<td>768.00</td>
</tr>
<tr>
<td>20 Yr Low Gas</td>
<td>26,010.40</td>
<td>10,929.00</td>
<td>4,595.00</td>
<td>3,262.00</td>
</tr>
</tbody>
</table>
Summary of Additional Revenues Needed Relative to Net CONE with 20 Yr Recovery—Low Gas

<table>
<thead>
<tr>
<th>Additional Revenue Needed</th>
<th>PJM</th>
<th>MAAC</th>
<th>Rest of PJM</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.5 Net CONE</td>
<td>38,334</td>
<td>12,634</td>
<td>25,700</td>
</tr>
<tr>
<td>0.5 Net CONE – 1.0 Net CONE</td>
<td>14,147</td>
<td>2,908</td>
<td>11,239</td>
</tr>
<tr>
<td>> 1.0 Net CONE</td>
<td>11,051</td>
<td>3,194</td>
<td>7,857</td>
</tr>
</tbody>
</table>

- For the 11,051 MW at “high” or “very high risk”, the average age is more than 50, average size less than 200 MW.

- For the 14,147 “at risk” the average age is 37, average size almost 400 MW

- For the remaining capacity “at low risk”, average age is 34, average size almost 500 MW
• 6,985 MW UCAP (7,350 MW ICAP) less coal capacity cleared in the 2014/15 BRA than in the 2013/2014 BRA

• Approximately 7,000 MW of FRR coal capacity (outside RPM) has been announced as retiring by 2015
 – Most of this capacity falls into the high or very high risk categories

• Reserve margin for 2014/2015 is projected at 19.6%, even with less coal capacity clearing

• Accounting for FRR announcements still leaves PJM above the 15.3% target
Potential Impacts on Local Transmission Reliability

- Large volume of likely retirements increases the probability of the need for some transmission upgrades to allow units to retire reliably.

- PJM request in its NESHAP comments to EPA:
 - Allow for at least a 1 year extension to 2016 for units deemed critical for reliability to allow transmission upgrades to be built to allow a unit to retire.
 - Unit must provide advance notice (2 years prior to effective compliance date) to provide sufficient lead time to construct transmission upgrades.
 - Possibility of extension beyond 2016 on a case-by-case basis through consent decrees.