Leaning on Line Pack

Presented by Diane A. Rigos, Senior Consultant

April 21, 2011

LEVITAN & ASSOCIATES, INC. MARKET DESIGN, ECONOMICS AND POWER SYSTEMS

Agenda

Introduction

- Outlook on intermittent generation
- Grid integration issues
- Gas infrastructure constraints/challenges
- Gas/electric convergence

Intermittent Generation as a % of Total Generation

U.S. Installed and Projected Wind Capacity

Source: AWEA, DOE's 20% Wind Energy by 2030 (May 2008)

FERC NOPR to Integrate Variable Energy Resources

- Nov 2010 NOPR landmark initiative to reform the Open Access Transmission Tariff
 - Transmission providers will be required to offer intrahourly transmission scheduling
 - VERs will have to provide meteorological and operational data
 - New generic ancillary service rate schedules for regulation service

Existing ISO Procedures

- Compliance with reliability standards through ancillary services
 - Dispatch and scheduling (days)
 - Voltage control and reactive supply (minutes)
 - Energy balancing (hours)
 - fossil fuels and pumped or other storage
 - Regulation and frequency response (minutes)
 - Increases linearly with wind
 - Varies by season and time of day
 - Operating reserve (hours)
 - Black start capability
- Not all ancillary services are market based
 - D & S, VC and RS are not

Max 60-min Wind Ramp Up and Down in PJM

Max 15-min Wind Ramp Up and Down in PJM

Emerging ISO Procedures/Needs

- Improving wind forecast models
 - 15-20% Mean Absolute Error (MAE)
- Shortening the forecast horizon from DA to HA
 - Reduces balancing energy due to prediction errors by 50% in northern Europe*
- ◆ Unavoidable MAE → increased regulation and ancillaries
- More energy storage
 - Batteries, flywheels, compressed air energy storage when excess wind or coal
- More interconnection / smarter grid
 - More cross border transmission links

^{* &}quot;Integrating Wind into Europe's Grid Network", Wind Directions (Nov/Dec 2005)

Myriad Challenges Before ISOs

- Will market participants tolerate
 - increased inefficiencies associated with re-dispatch?
 - uneconomic commitments explained by frequent and unpredictable swings of large magnitude?
- Is the supply elasticity of ancillary services sufficient in light of aggressive RPS targets?
 - Maybe today in some ISOs
 - Not likely in the future without compensatory measures and incentives
 - NYISO found no significant increase in regulation requirements for up to 10% of peak load but an increase of 10% (25 MW) for up to 20% peak load*

^{*} R. Pike, NYISO, "Complimentary Roles of Storage and Renewable Resources", PJM/EPRI 2010

The Challenges Before ISOs (cont.)

- Can ISOs change market rules to accommodate the integration of intermittent resources?
 - Crises such as ERCOT's Feb 26, 2008 grid emergency have resulted in operational changes such as DA and HA wind production forecast modifications and more regulation
 - Market rule changes take a long time
 - Europe is still struggling with market reform
 - Market rule changes necessitate painstaking stakeholder involvement and FERC approval
- What is the best way to define a stakeholder process oriented around market rule changes?
 - Educate all parties on the issues and invite solutions

Rationalizing the Use of Pipeline Line Pack

- Pipeline network like a vast horizontal silo
 - packed and drafted daily
- Vast untapped potential for wind integration
- Heavy penalties for unauthorized overpulls hinder generators' reliance on line pack
- ISOs cannot unilaterally formulate incentives that may deplete line pack
 - Broad stakeholder participation needed to compensate pipelines, safeguard entitlement holders
 - Seasonal operating constraints

Pipeline Tariff Restrictions Affecting Peakers

- Requires shippers to take service on a ratable 1/24 hour take subject to a margin of error of 1-4%
- Possible for generators to take gas on a non-ratable basis or at enhanced pressures when pipeline operations permit
- Peaking generators typically have interruptible transportation
- Back-up generation will require ULSD or firm gas transportation service

Gas Transportation Services for Backing-up Wind

- Enhanced line pack
 - Compressors may need to be run more frequently resulting in more fuel charges and maintenance
 - Largest swings in ramp rates do not occur in summer at least in PJM
- New no-notice and gas storage services
 - Storage can act like a shock absorber esp. for intra-hour fluctuations if close enough: gas moves at 15-30 mph and pressure changes move more quickly
 - Storage tariffs might need modification
- Increasing the number of nomination cycles
 - Currently 4 nomination windows with a 6-hour nomination cycle
- Reducing the length of nomination cycles
 - Current 6-hour nomination cycle could be reduced to 1-hour

U.S. Underground Natural Gas Storage (2007)

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division Gas, Gas Transportation Information System, December 2008.

Transient Modeling & Continuous Measurement

- Steady state and transient flow models
- ◆ ICF modeled a fictional pipeline for the INGAA Study
- Compared nomination cycle times
 - Found that 1-hour nomination cycle provides more stable line pack compared to the longer 6-hour nomination cycle
- Additional measurement sensors and more information management can alert operators to quickly changing conditions in pipeline

Consolidated Network of Pipelines Serving PJM

Dynamic Line Transients Across PJM Supply

Line Pack Depends on Pipeline Specifics

- Electricity appears to move at the speed of light
 - natural gas moves at twice the speed of world class marathoner
- Straightforward operational actions affect line pack across the supply chain
 - Increase production at the wellhead and/or at gas gathering facilities
 - Reverse flow across bidirectional segments
 - Increase flows at pipeline interconnects
 - Increase horsepower at key compressor stations
 - Storage withdrawals, including increased regasified LNG

Gas Pull from Activation of GTs Possible

- Aggressive management of line pack inventory required for replenishment
- ◆ 10 LMS 100 GTs = 1,000 MW
 - ~ 690 MMBtu First 10 minutes Gas Use
 - ~ 7,590 MMBtu First Hour Gas Use
 - ~ 15,870 MMBtu Two Hour Gas Use
- ◆ Withdrawal ~ 16,000 MMBtu worse case limit
- Quality of service not degraded

Stakeholder process

- Multiple sticky issues
 - If line pack is increased to serve a back-up generator, this benefit may be enjoyed by other pipeline customers. Who should pay?
 - Should quick start peakers be treated differently?
- Rate design for pipelines: cost recovery should follow cost responsibility
 - Existing contracts and settlements may not allow for adjustment of rates or recovery of costs incurred for the benefit of the entire system

Tariff Changes Require Stakeholder Participation

- Green path initiatives involving interstate pipelines may require more than a regulatory "nudge
 - FERC NOPR
 - State commission participation
- Only so much line pack to go around
 - During cold snaps line pack must be reserved for system integrity to ensure no harm to primary entitlement holders
 - Most other months line pack can be managed and exploited to promote green path objectives
- Streamlined coordination and communication among gas and electric-side participants, including producers and storage operators

NAESB Scheduling Protocols Rigid by Design

- Protects primary entitlement holders
- Ensures system wide integrity
- Provides intra day renomination / confirmation cycles
- Not tailored to no-notice or short-notice requirements of quick start GTs
 - Exposed to costly penalties for unauthorized gas use
 - Start up on ULSD

Conclusions

- Need stakeholder process to initiate co-operation between pipelines, generators (wind and natural gas) and ISOs
- Need market rules to compensate both gas suppliers and GTs to provide back-up on short notice
- Need transient pipeline modeling to explore
 - the availability and limits of linepack for each pipeline
 - the need for more natural gas storage in the market area
- Need to provide pipeline with real time information about operation of electric grid
 - Especially real time notice of low wind conditions when peakers will need to be dispatched