

The Future From One RTO's Window The Institute for Regulatory Policy Studies

Dave Hadley VP, State Regulatory Relations Midwest ISO

April 29, 2010

The Midwest ISO's geographic footprint is broad and diverse

Interconnected High Voltage Transmission Lines

• 93,600 miles

Installed Generation Capacity

- 138,556 MW (market footprint)
- 159,000 MW (reliability footprint)
- 5,575 generating units

Peak Demand - 7/13/2006

- 116,030 MW (market footprint)
- 136,520 MW (reliability footprint)

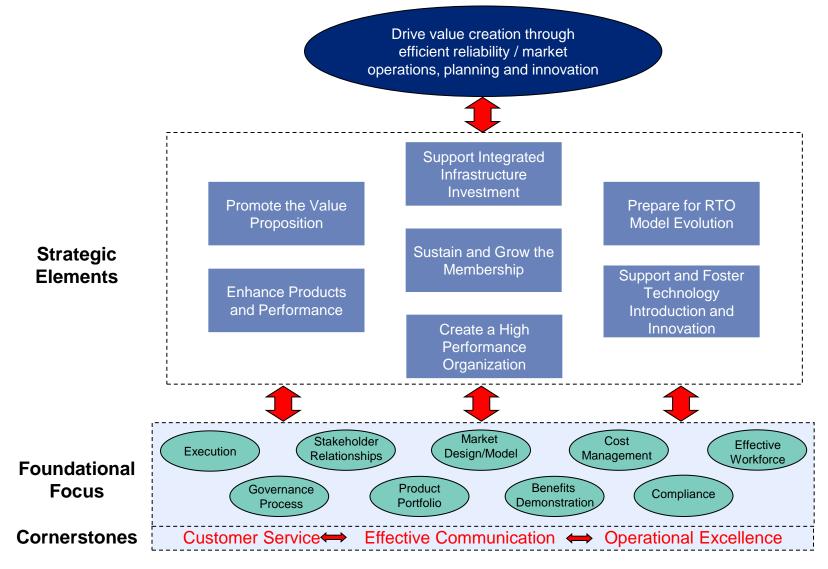
Midwest Market Highlights

- \$41 billion annual gross market charges (2008)
- 300 Market Participants who serve 40+ million people

Two Control Centers

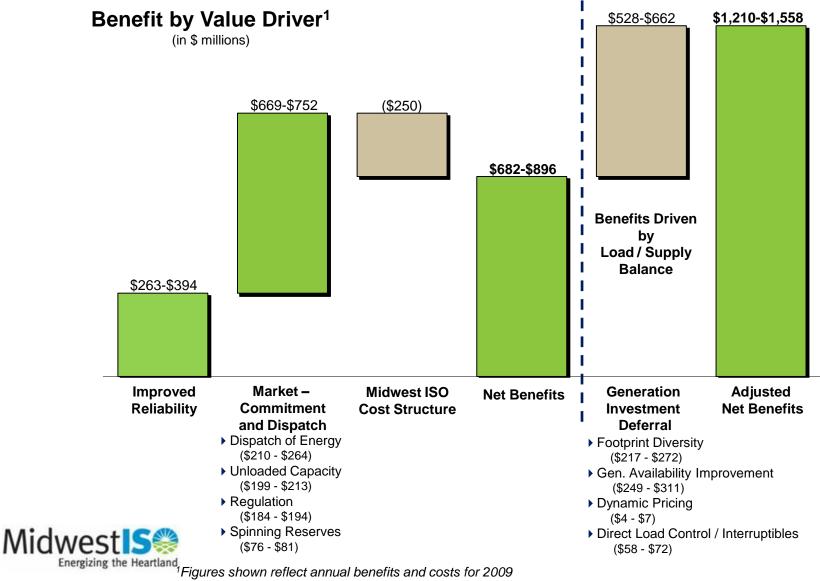
- Carmel, IN (Headquarters)
- St. Paul, MN

In 2007, several key issues were identified that drove the Midwest ISO's Strategic Plan. Many of these same issues are continuing to drive our strategic direction, but the context has changed for most.


2007 Issues

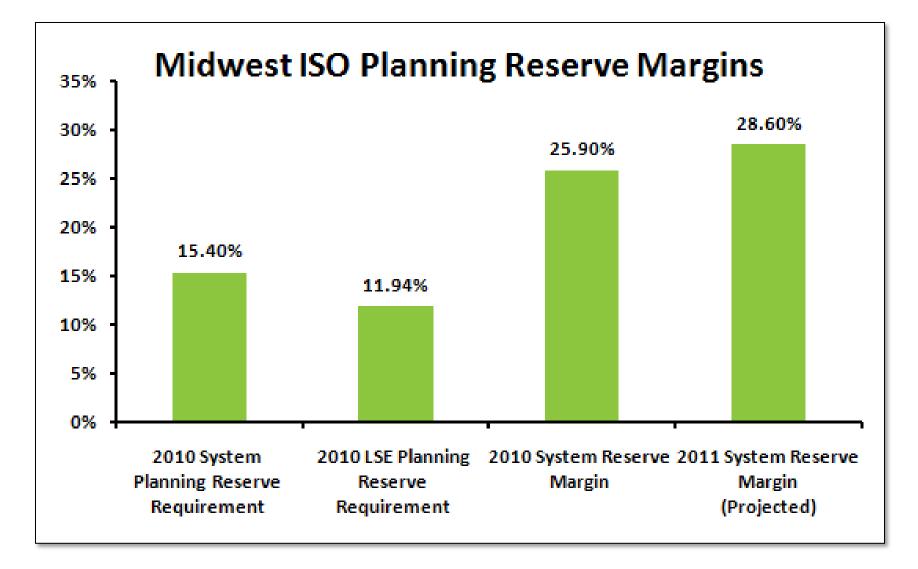
2010 Status

3


2007 133063		
 Limited stakeholders ability to understand and confirm value received from RTO 	Value Proposition	 Members confirming value in open proceedings State commissions quoting value proposition to state legislatures
 Renewable Portfolio Standards gaining momentum RTO cost recovery concerns 	State Policy	 RPS driving construction Equitable allocation of transmission expansion costs
 FERC policy push for RTOs waning Energy & environmental policy uncertainty 	Federal Policy	 FERC policy concentrated on RTO effectiveness Compliance is significant focus Energy & environmental policy uncertainty continues
 Overall spend increasing but insufficient Coordination of projects difficult across multiple boundaries 	Transmission Development	 Cost allocation / recovery is the key battlefield with state commissions leading discussions
 Capacity overhang decreasing Policy uncertainty stalling construction Gas construction default position despite high gas cost 	Capacity Development	 Capacity overhang returns Renewable additions driven by state RPS

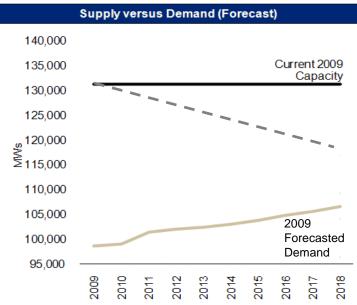
The Midwest ISO Strategic Plan is very relevant to guide this evolving future

The Midwest ISO 2009 Value Proposition

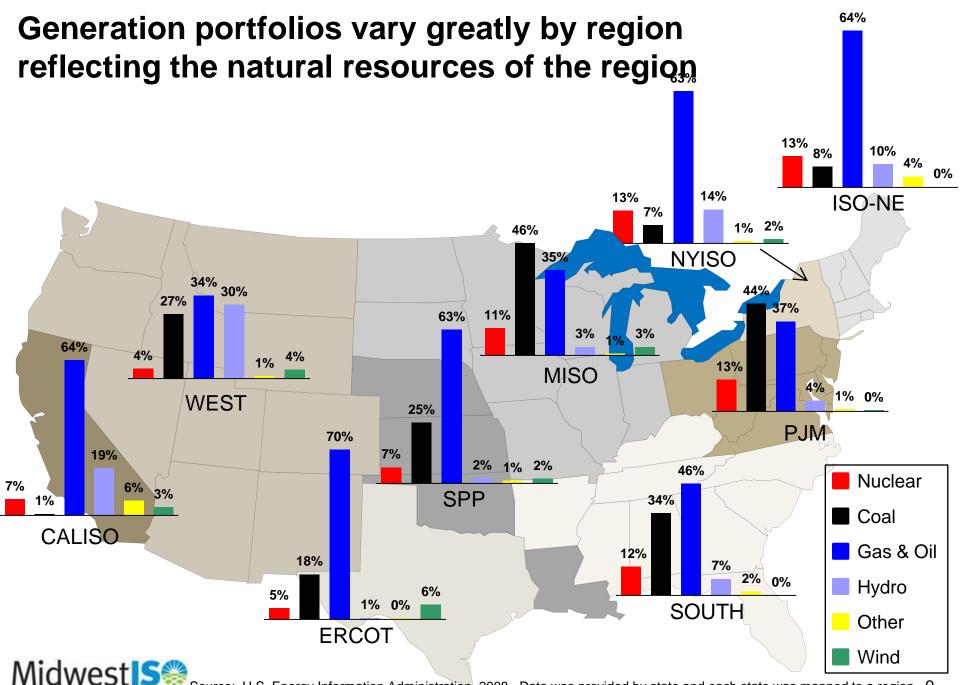


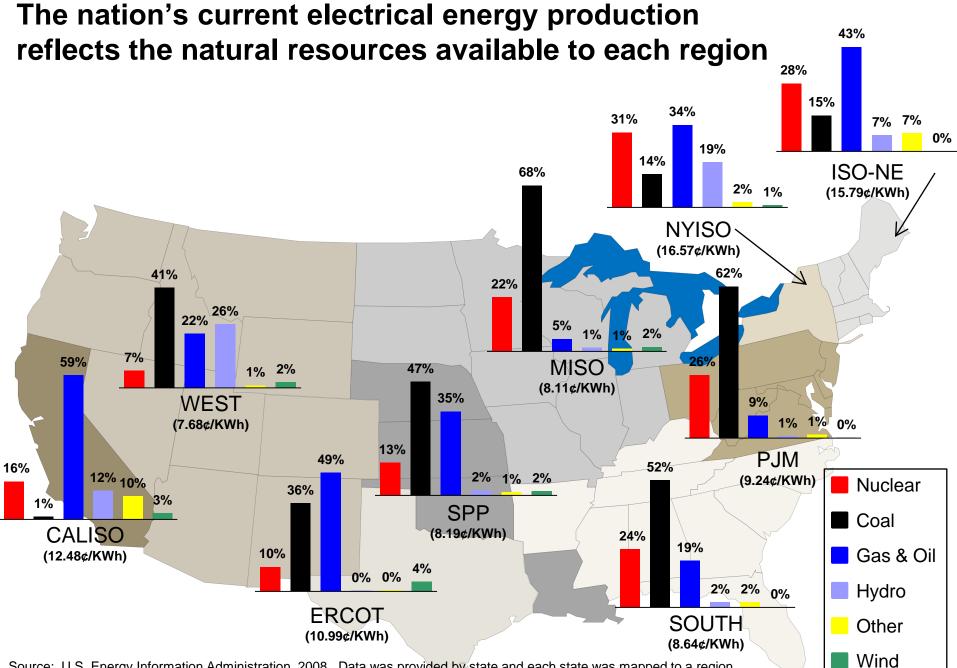
Understanding what the generation fleet might look like in the future is critical

What transmission is needed? What new products are needed? How will our members be impacted? How should we educate policy makers? What new tools / skills do we need? What will other RTOs offer? How do we provide value?

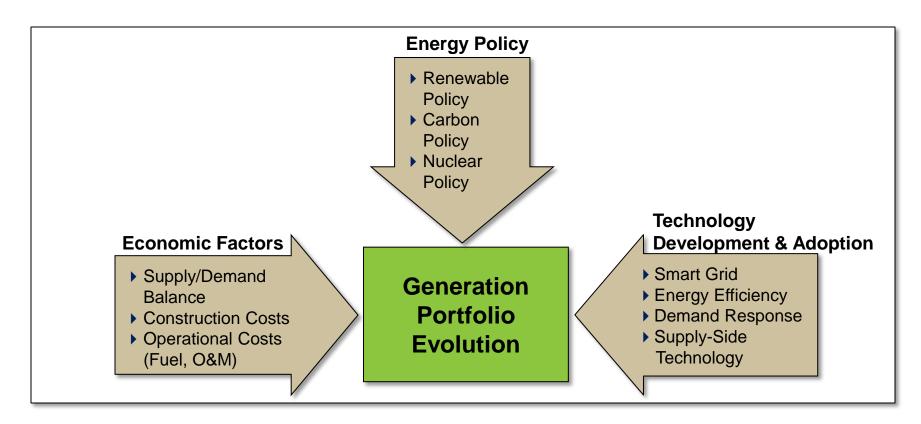

How much is enough?


We must look to the future in evaluating Smart Grid options Envision what the grid will / could look like in 20 years


- Do not be "lulled" to sleep by today's overcapacity situation
- Do not miss tomorrow's opportunities by thinking of yesterday's issues and technologies
- Look at future generation portfolio possibilities to understand future issues and the value of emerging business models

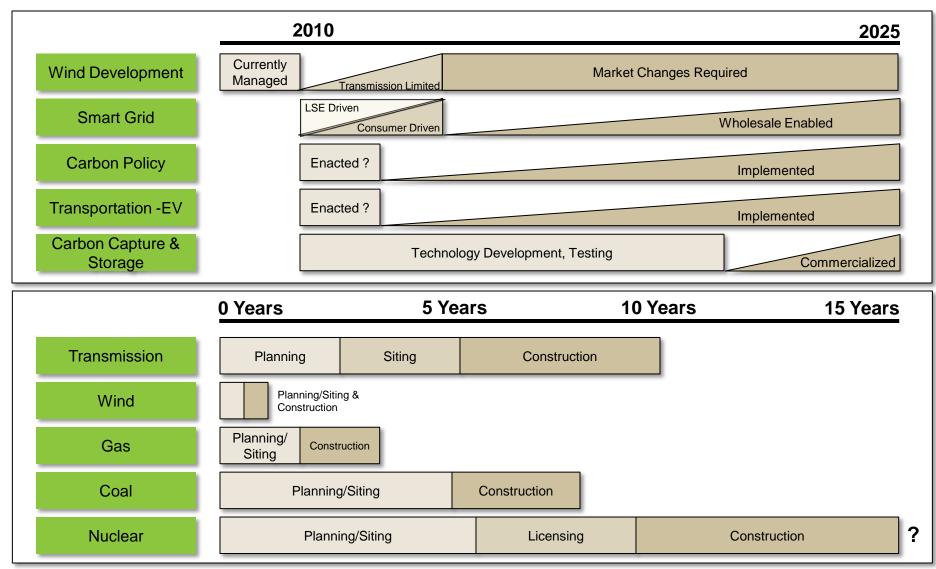

Current Electricity Production

Future Electricity Production



Energizing the Heartland Source: U.S. Energy Information Administration, 2008. Data was provided by state and each state was mapped to a region. 9 Therefore, each region characterized as a RTO is a compilation of entire state(s) and is only a proxy for actual RTO totals.

Source: U.S. Energy Information Administration, 2008. Data was provided by state and each state was mapped to a region. Therefore, each region characterized as a RTO is a compilation of entire state(s) and is only a proxy for actual RTO production totals. The weighted average retail price is shown under each region.

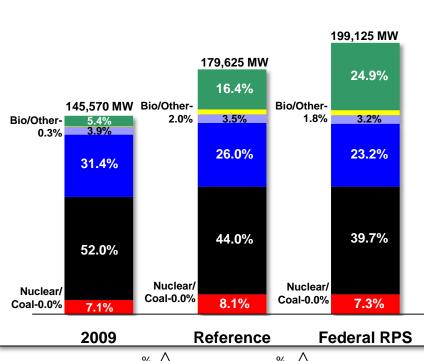

The future generation portfolio will be shaped by a host of influences

A versatile transmission system expansion is required to accommodate multiple potential generation futures

Policy issues and technology development/adoption will impact the generation portfolio over time and could be constrained by the lead times required to build transmission and generation

The Midwest ISO has developed a series of potential future scenarios that demonstrate the potential effects of these influences

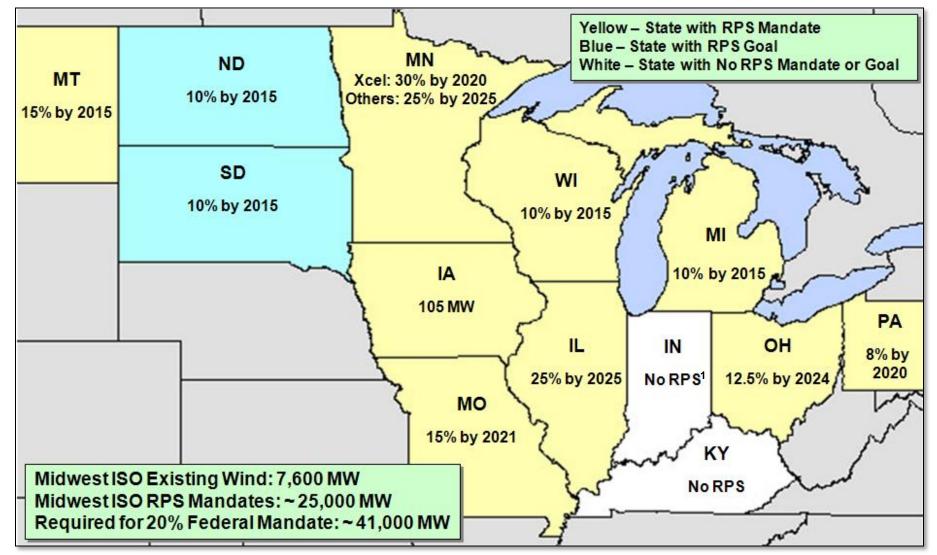
Scenario	Reference	Federal RPS	Carbon Cap	Smart Grid + EV	Gas Future
Description	Business as usual 20% energy to be served by renewat resources		39.5% carbon reduction by 2029	Adds effect of Smart Grid and Electric Vehicles to the "Federal RPS" and "Carbon Cap" scenarios	Only gas-fired resources are built
to be constrained based on economic drivers20% Installed genera to be constrained		requirements Federal RPS of 20% Installed generation to be constrained based on economic	 State RPS requirements Allows existing fleet retirements with retro- fit sequestration available 	 Federal RPS of 20% 39.5% carbon reduction by 2029 EV penetration included in energy growth rate Allows existing fleet retirements with retrofit sequestration available 	 State RPS requirements
21,600 MW compared intermittent resources to 2009 will have significant		 Carbon output decreases 30% Retail impact – 23% increase over reference scenario 	 277% increase in capital costs over reference scenario Retail impact – 33% increase over reference scenario 	 Most flexible fleet operationally of all scenarios Retail impact – 11% decrease over reference scenario 	


The Federal RPS case highlights the impact of meeting our region's requirements under a 20% mandate. This case is used to illustrate the Midwest's work to reliably integrate large amounts of wind into the portfolio.

Scenario	Reference	Federal RPS	Carbon Cap	Smart Grid + EV	Gas Future
Description	Business as usual	20% energy to be served by renewable resources	39.5% carbon reduction by 2029	Adds effect of Smart Grid and Electric Vehicles to the "Federal RPS" and "Carbon Cap" scenarios	Only gas-fired resources are built
Key Assumptions	 State RPS requirements Installed generation to be constrained based on economic drivers 	 State RPS requirements Federal RPS of 20% Installed generation to be constrained based on economic drivers 	 State RPS requirements Allows existing fleet retirements with retro- fit sequestration available Federal RPS of 20% 39.5% carbon reduction by 2029 EV penetration included in energy growth rate Allows existing fleet retirements with retro- fit sequestration available 		• State RPS requirements
Key Findings	generation increases 21,600 MW compared to 2009 will have significant		 Carbon output decreases 30% Retail impact – 23% increase over reference scenario 	 277% increase in capital costs over reference scenario Retail impact – 33% increase over reference scenario 	 Most flexible fleet operationally of all scenarios Retail impact – 11% decrease over reference scenario

Federal RPS

Installed Generation – 2025 (MWs)

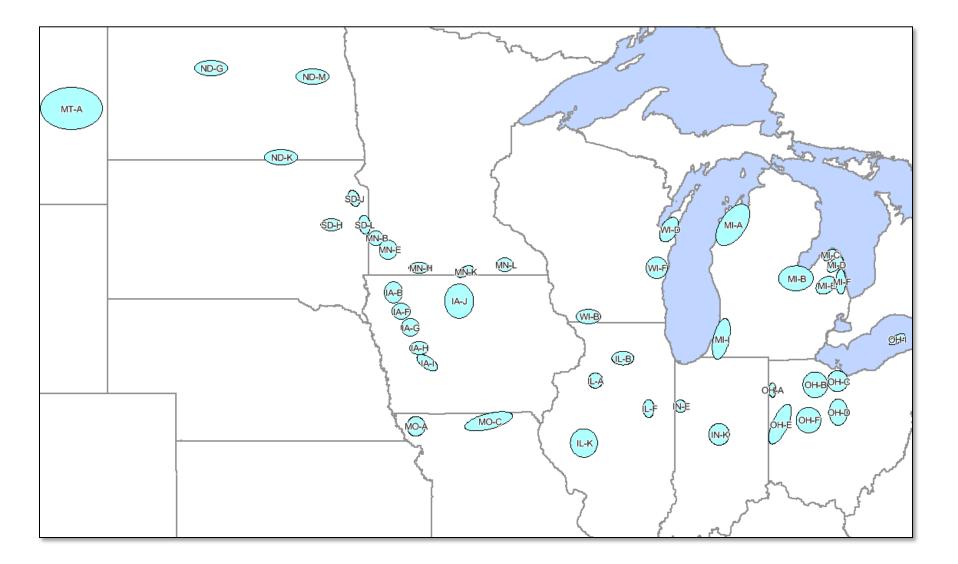


		% ∆		% ∆	
Wind/ Solar	7,805	个277%	29,405	个68%	49,505
Biomass/ Other	397	个806%	3,597	0%	3,597
Hydro	5,609	个 13%	6,359	0%	6,359
Gas & Oil	45,725	↑2%	46,745	√1%	46,145
Coal	75,673	个 4%	78,995	0%	78,995
Nuclear/ Coal	0	0%	0	0%	0
Nuclear	10,361	个40%	14,524	0%	14,524

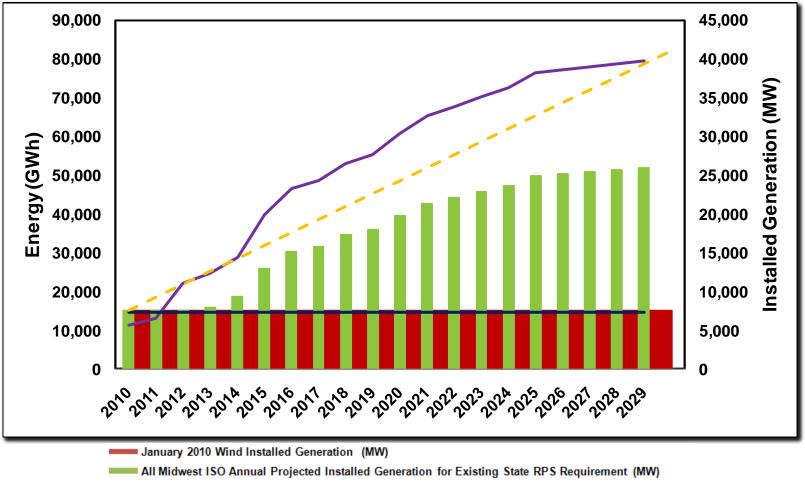
Scenario	Reference	Federal RPS	%∆
Top 3 Fuels (Production)	 Coal Nuclear Wind/Solar 	 Coal Wind/Solar Nuclear 	
Carbon Output in 2025 (tons in Mils.) ¹	498.0M 0.75 tons/MWh	442.0M 0.66 tons/MWh	√11%
Production Cost (Bils.)	\$261	\$259	0%
Capital Cost (Bils.) ²	\$99	\$153	个55%
LMP (\$/MWh)	\$21.71	\$20.33	√6%
Retail Cost (¢/KWh) ³	9.02¢	10.27¢	14%


¹2005 Midwest ISO Base CO₂ Output: 535M tons ²Capital Cost includes generation costs only ³Retail Cost (¢/KWh) is in 2010 dollars Note: 15% reserve margins used in scenario Note: 8% wind capacity credit used in scenario

The majority of the Midwest ISO states have adopted Renewable Portfolio Standards



Installed wind generation has been steadily increasing in the Midwest ISO market



Regional Generation Outlet Study Zones

To meet the projected energy requirements in the Midwest ISO states, wind in the footprint will increase dramatically

- All Midwest ISO Annual Projected Existing State RPS Requirement (GWh)
- ------ 2009 Annual Wind Energy (GWh)
- All Midwest ISO Annual Projected Installed Generation for Federal RPS Requirement Illustrative (MW)

Notes: Nameplate MW estimate is based on 35% wind capacity factor

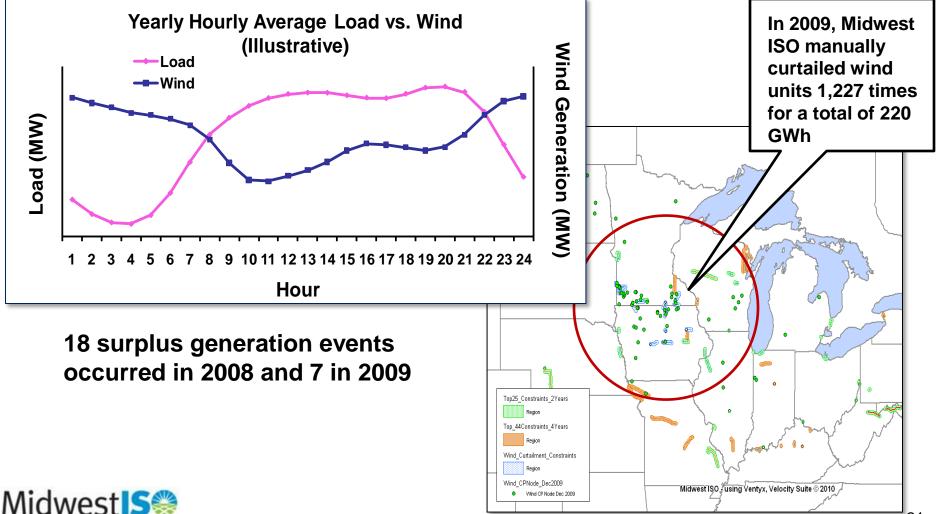
Region Generation Outlet Study is developing transmission plans for 25,000 MW of wind to meet current RPS mandates in the Midwest ISO states. Federal 20% RPS mandate equates to 41,000 MW.

Inherent characteristics of wind have significant operational impacts on the Midwest ISO operationally

Driver

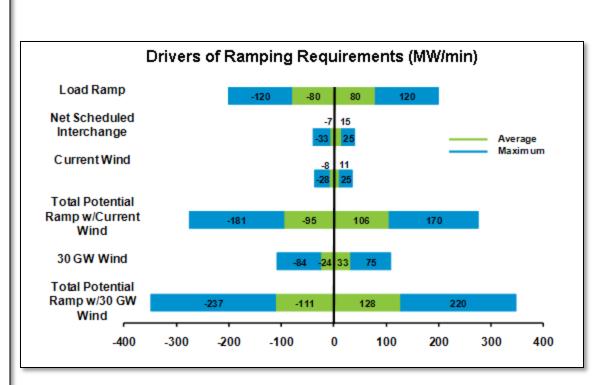
- Variability of wind
- Negative correlation of wind and load
- Transmission congestion caused by wind location

Market Issue


- Surplus generation events
- Over and under commitment
- Ramp management
- Congestion management

Current Tools

- Wind forecast
- Manual curtailment
- Fast start unit commitment


The mismatch between "normal" load and wind generation profiles may contribute to congestion and surplus generation events which are currently managed through manual curtailments of wind

Energizing the Heartland

Wind variability creates a significant ramping challenge which will require improved tools and may require new market products to manage

- The current wind variability and profile impact ramp requirements as significantly as Net Scheduled Interchange
 - RPS wind capacity levels will dramatically increase the operational difficulties
- Current operational methods to manage this ramp include:
 - Load and wind forecasting
 - Pre-commitment of units
 - Use of fast-start units and spinning reserves to manage unexpected variability
- Improved operational and market methods - under development
 - Improved load and wind forecasting
 - 30-minute reserve products
 - Ramping service product

New tools are being considered to help manage operational impacts of wind on the Midwest ISO

Driver

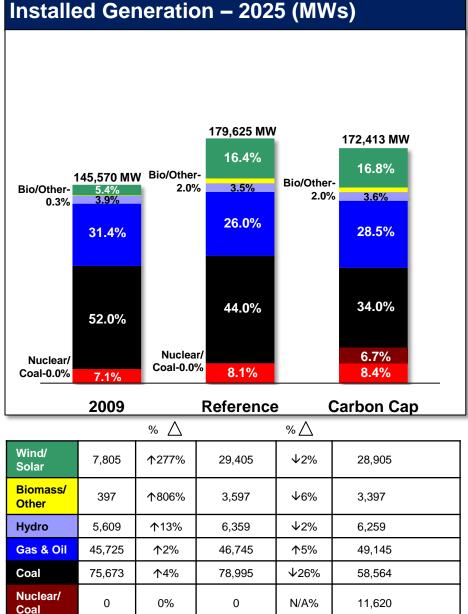
- Variability of wind
- Negative correlation of wind and load
- Transmission congestion caused by wind location

Market Issue

- Surplus generation events
- Over and under commitment
- Ramp management
- Congestion management

New Tools/Processes

- Enhanced wind forecasting
- Market dispatch of intermittent units
- New 30-minute reserve product
- Potential new ramping service product



While potential climate change policy could have significant impacts on the Midwest's generation fleet, the actual impacts will depend on the willingness of policy makers to increase costs

Scenario	Reference	Federal RPS	Carbon Cap	Smart Grid + EV	Gas Future
Description	Business as usual	20% energy to be served by renewable resources	39.5% carbon reduction by 2029	Adds effect of Smart Grid and Electric Vehicles to the "Federal RPS" and "Carbon Cap" scenarios	Only gas-fired resources are built
Key Assumptions	 State RPS requirements Installed generation to be constrained based on economic drivers 	 State RPS requirements Federal RPS of 20% Installed generation to be constrained based on economic drivers 	 State RPS requirements Allows existing fleet retirements with retro- fit sequestration available 	uirements20%Ilows existing fleet39.5% carbonrements with retro-reduction by 2029equestrationEV penetration	
Key Findings	generation increases increase in 21,600 MW compared intermittent resources to 2009 will have significant		 Carbon output decreases 30% Retail impact – 23% increase over reference scenario 	 277% increase in capital costs over reference scenario Retail impact – 33% increase over reference scenario 	 Most flexible fleet operationally of all scenarios Retail impact – 11% decrease over reference scenario

Carbon Cap

14,524

0%

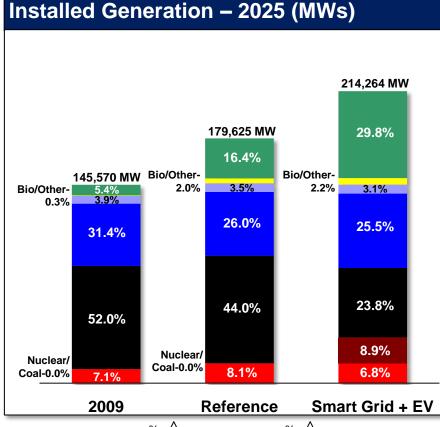
14,524

个40%

10,361

Nuclear

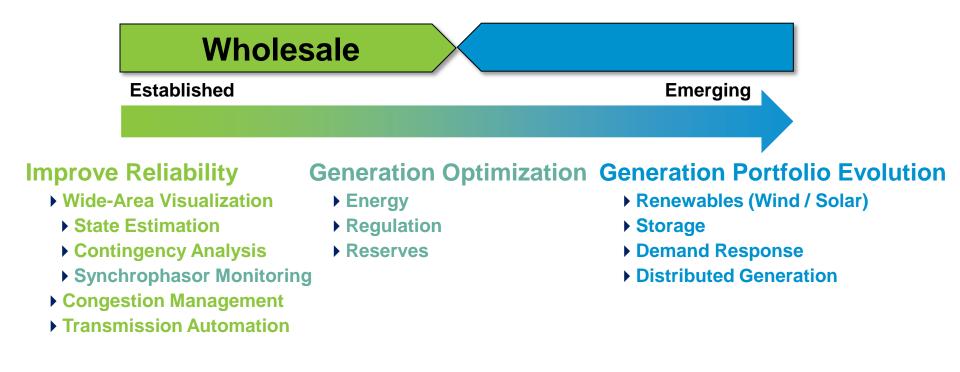
Scenario	Reference	Carbon Cap	% △
Top 3 Fuels (Production)	 Coal Nuclear Wind/Solar 	 Coal Nuclear Wind/Solar 	
Carbon Output in 2025 (tons in Mils.) ¹	498.0M 0.75 tons/MWh	338.0M 0.56 tons/MWh	↓ 32%
Production Cost (Bils.)	\$261	\$262	0%
Capital Cost (Bils.) ²	\$99	\$131	↑ 32%
LMP (\$/MWh)	\$21.71	\$27.36	ተ 26%
Retail Cost (¢/KWh)³			↑ 23%


¹2005 Midwest ISO Base CO₂ Output: 535M tons ²Capital Cost includes generation costs only ³Retail Cost (¢/KWh) is in 2010 dollars Note: 15% reserve margins used in scenario Note: 8% wind capacity credit used in scenario

This case examines the potential influence of Smart Grid and electric vehicle adoption layered on top of Federal RPS and carbon reductions. This case is a platform to discuss Smart Grid in the Midwest ISO.

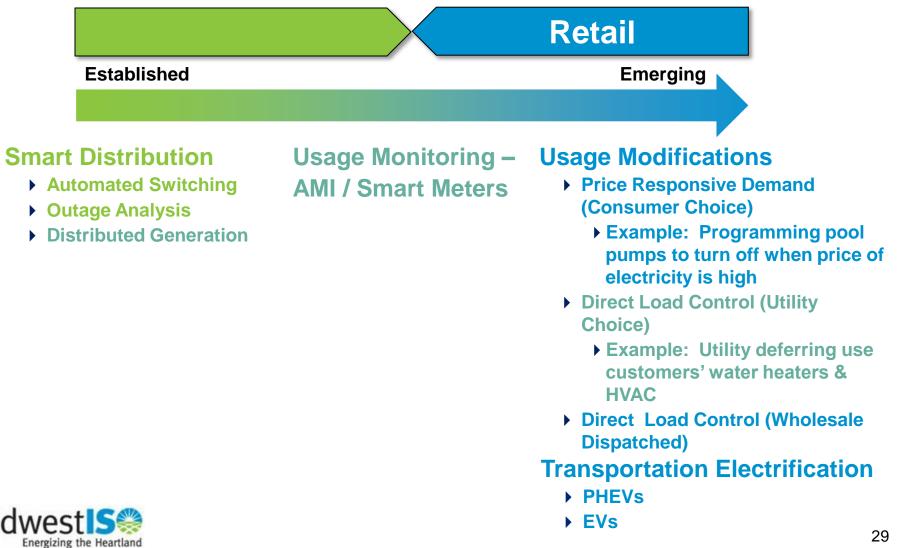
Scenario	Reference	Federal RPS	Carbon Cap	Smart Grid + EV	Gas Future
Description	ion Business as usual 20% energy to be served by renewable resources		39.5% carbon reduction by 2029	Adds effect of Smart Grid and Electric Vehicles to the "Federal RPS" and "Carbon Cap" scenarios	Only gas-fired resources are built
Key Assumptions	 State RPS requirements Installed generation to be constrained based on economic drivers 	 State RPS requirements Federal RPS of 20% Installed generation to be constrained based on economic drivers 	 State RPS requirements Allows existing fleet retirements with retro- fit sequestration available 	 Federal RPS of 20% 39.5% carbon reduction by 2029 EV penetration included in energy growth rate Allows existing fleet retirements with retrofit sequestration available 	State RPS requirements
generation increases 21,600 MW compared to 2009 Retail impact – 4% increase over current MISO retail rates increase in intermittent resour will have significar Retail impact – 14% increase over		intermittent resources will have significant impact on operations	 Carbon output decreases 30% Retail impact – 23% increase over reference scenario 	 277% increase in capital costs over reference scenario Retail impact – 33% increase over reference scenario 	 Most flexible fleet operationally of all scenarios Retail impact – 11% decrease over reference scenario

Smart Grid + EV

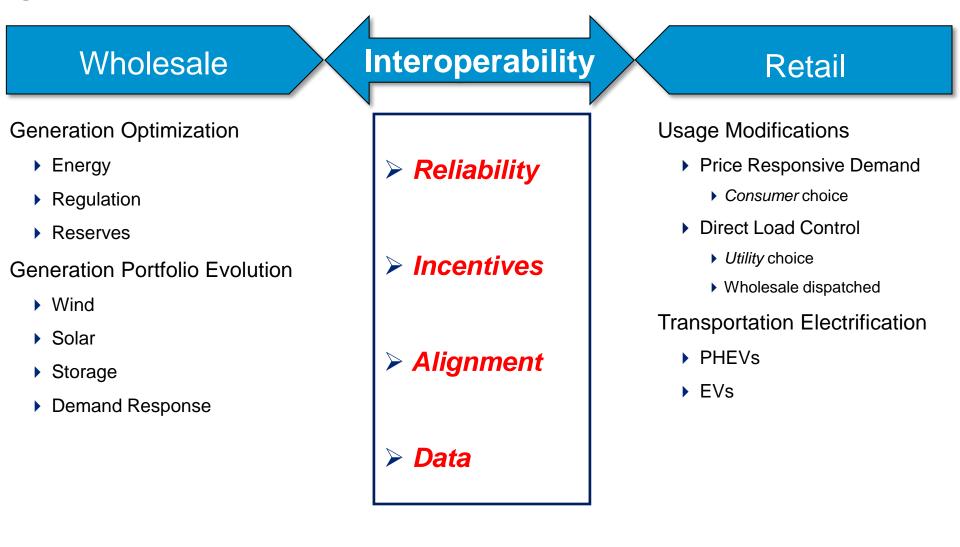

		% ∆		% ∆	
Wind/ Solar	7,805	个277%	29,405	个117%	63,805
Biomass/ Other	397	个806%	3,597	个33%	4,797
Hydro	5,609	个13%	6,359	↑ 3%	6,559
Gas & Oil	45,725	↑2%	46,745	个 17%	54,545
Coal	75,673	个4%	78,995	√35%	50,996
Nuclear/ Coal	0	0%	0	N/A%	19,038
Nuclear	10,361	个40%	14,524	0%	14,524

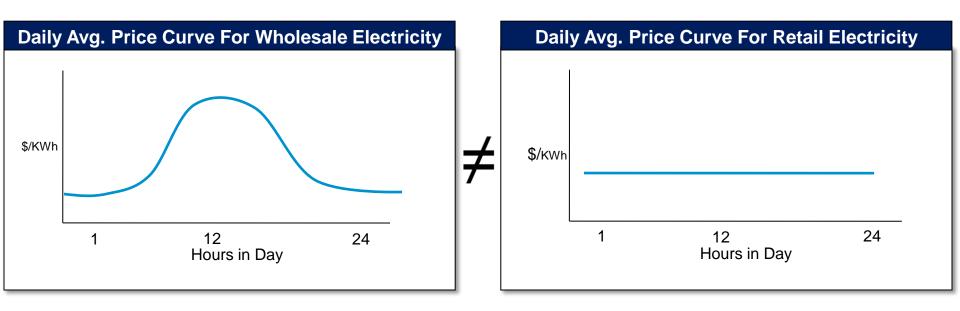
Scenario	Reference	Smart Grid + EV	% 🛆
Top 3 Fuels (Production)	 Coal Nuclear Wind/Solar 	 Coal Wind/Solar Nuclear 	
Carbon Output in 2025 (tons in Mils.) ¹	498.0M 0.75 tons/MWh	334.3M 0.42 tons/MWh	↓ 33%
Production Cost (Bils.)	\$261	\$297	↑ 14%
Capital Cost (Bils.) ²	\$99	\$274	个 177%
LMP (\$/MWh)	\$21.71	\$28.78	↑ 33%
Retail Cost (¢/KWh) ³	9.02¢	11.98¢	133%

¹2005 Midwest ISO Base CO₂ Output: 535M tons
²Capital Cost includes generation costs only
³Retail Cost (¢/KWh) is in 2010 dollars
Note: 15% reserve margins used in scenario
Note: 8% wind capacity credit used in scenario
Note: Scenario includes impact of Federal RPS and

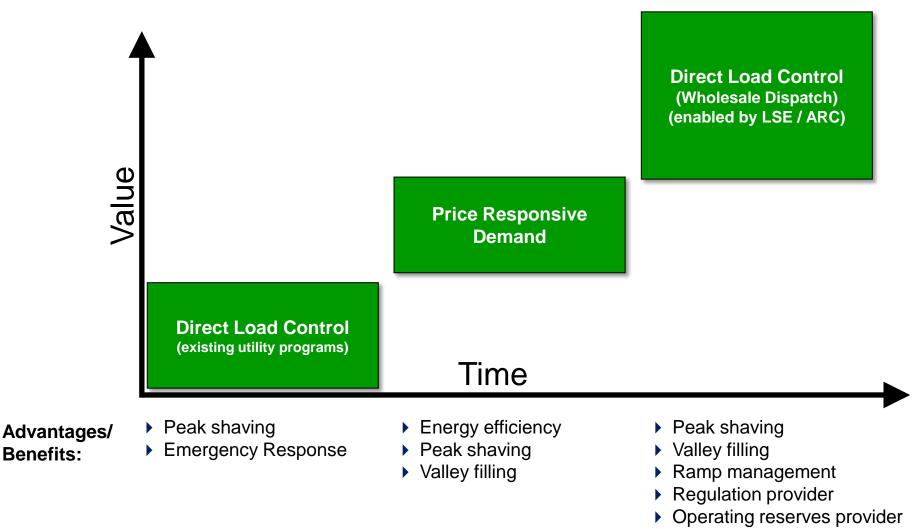

Carbon Cap scenarios

Significant progress has been made on the wholesale Smart Grid capabilities because they improve reliability and reduce costs. New applications must enhance those benefits while also enabling energy policy changes.




Most retail Smart Grid capabilities have struggled to prove their economic value to consumers or to utilities

The key to Retail Smart Grid value is leveraging it to improve wholesale generation dispatch optimization and reduce generation portfolio evolution costs


Interoperability requirements start with appropriate price signals to retail customers

Price signals enable consumers to make their own choices on when to modify usage – resulting in varying degrees of energy efficiency, peak shaving and valley filling

The real value occurs when loads are enabled as supplyside resources and deployed optimally alongside generation resources

Uncertainty management

Midwest ISO is enabling Demand Response in all areas of the market, but much work is still required to attract retail participation

- Existing opportunities for DR to participate in the Midwest ISO
 - Resource Adequacy
 - Load Modifying Resource
 - Demand Response Resource
 - Energy Market
 - Price Responsive Demand (Day-Ahead Market only)
 - Demand Response Resources
 - Ancillary Markets (Regulation / Spinning Reserves / Supplemental Reserves)
 - Demand Response Resources
 - Emergency Demand Response
 - Emergency Demand Response
- Emerging opportunities for DR to participate in the Midwest ISO (programs currently pending FERC approval)
 - Aggregator of Retail Customers will allow participation in Resource Adequacy, DA Energy Market, and Ancillary Services Markets
 - DRR Type I will expand participation to Spinning Reserve Market

What role does energy storage play?

- Widespread renewable resources and a smart grid is better enabled with the availability of cost-effective energy storage
- House and Senate bills have been introduced promoting tax incentives for faster innovation and deployment of energy storage technology
- Major benefits anticipated from energy storage:
 - Grid optimization for bulk power production
 - System balancing with variable or diurnal renewable resources
 - Integration of plug-in electric hybrid vehicles
 - Deferral of T&D investment
 - Ancillary services

Energy storage needs vary by application, depending upon the scale and duration of the power required

Compressed air storage and pumped storage are grid-scale applications; other technologies being pursued are largely distributed utility applications

Midwest ISO enabling storage in its footprint

• Stored Energy Resources are resources capable of supplying Regulating Reserves through the short-term storage and discharge of electrical energy in response to Midwest ISO setpoint instructions

 Supply of Regulating Reserves cleared on Stored Energy Resources must be less than or equal to the market-wide Regulating Reserve requirement

Current methodology approved by FERC by order dated December 31, 2009

► Found proposed compensation and operational conditions to be comparable to other products

- Stored Energy Resources can set MCP
- ► The Midwest ISO's proposal was generally designed for fly-wheel technology

► The Midwest ISO was directed to and is studying other forms of stored energy technologies

Selected Energy Storage Technologies by Level of Technology Maturity

5	U		<u> </u>
Laboratory	Prototyp	e	Commercial
Lithium io	n l	Flywheels	
Ultracapaci	ore	Nickel me	al-hydride
Ollacapaci	.015		Pumped storage
L	ead acid/carbon	Sodiun	n sulfur
Flow batteries	Advanced CAES		Compressed air energy storage (CAES)

Copyright © by Scott Madden. All rights reserved.

IRC Plug-in Electric Vehicles Study

Study Parameters	Outcomes & Recommendations
This study had five primary objectives:	The study estimates that one million PEVs could be deployed in North America within a five- to ten-year timeframe.
 Identify operational, load, and price impacts to the North American electricity grid from light-duty PEVs as their adoption increases; 	Researchers believe that PEV sales are likely to be heavily concentrated in large urban areas. Available capacity for demand reduction depends on the number of PEVs available locally,
2. Identify potential PEV products and services;	charging energy, and likelihood that the vehicle is charging.
3. Ascertain the market design adaptations that might be necessary to incorporate PEV services into existing markets and provide a standardized approach to mobile loads;	Therefore, based on PEV load projections, major cities appear to offer the greatest opportunity for ISO/RTO products derived from PEV load management.
4. Determine key technologies, communications, cybersecurity, and protocols required to enable PEV products and services; and	With regard to wholesale-energy price impacts, the effect varies greatly by ISO/RTO, based on the penetration and concentration of PEVs. Initial research indicates that the short-term wholesale
5. Determine the types of investments in Information Technology (IT) infrastructure needed to integrate PEVs, and estimate their costs.	energy price impact of one million PEVs ranges from near zero to up to 10%, depending on the region, available resources, and load (both time of day and day of the year).

Smart Grid Investments by Region and Type							
Total PEVs in	ISO/RTO	Total PEVs	Load if everyone charged at the	Load if charging is staged over 8	Load if charging is staged over 12		
Midwest ISO			same time (MW)	hours (MW)	hours (MW)		
footprint equals:	ISO-NE	61,074	338	75	50		
1. Consumer PEVs: =65,022	NYISO	43,738	242	27	18		
	PJM	144,172	797	178	119		
	Midwest ISO	94,644	523	117	78		
2. Fleet PEVs	SPP	30,459	168	38	25		
=29,956 Total = 94,644	ERCOT	42,769	237	53	35		
	CAISO	267,654	1,480	331	221		
	TOTAL	684,510	3,785	819	546		

This case looks at a future where all policy discussions stall and all construction defaults to gas

Scenario	Reference	Federal RPS	Carbon Cap	Smart Grid + EV	Gas Future
Description	Business as usual	20% energy to be served by renewable resources	39.5% carbon reduction by 2029	Adds effect of Smart Grid and Electric Vehicles to the "Federal RPS" and "Carbon Cap" scenarios	Only gas-fired resources are built
Key Assumptions	 State RPS requirements Installed generation to be constrained based on economic drivers 	 State RPS requirements Federal RPS of 20% Installed generation to be constrained based on economic drivers 	 State RPS requirements Allows existing fleet retirements with retro- fit sequestration available 	 Federal RPS of 20% 39.5% carbon reduction by 2029 EV penetration included in energy growth rate Allows existing fleet retirements with retrofit sequestration available 	 State RPS requirements
Key Findings	 Wind installed generation increases 21,600 MW compared to 2009 Retail impact – 4% increase over current MISO retail rates 	 Managing large increase in intermittent resources will have significant impact on operations Retail impact – 14% increase over reference scenario 	 Carbon output decreases 30% Retail impact – 23% increase over reference scenario 	 277% increase in capital costs over reference scenario Retail impact – 33% increase over reference scenario 	 Most flexible fleet operationally of all scenarios Retail impact – 11% decrease over reference scenario

Gas Future

Hydro

Coal

Coal

Gas & Oil

Nuclear/

Nuclear

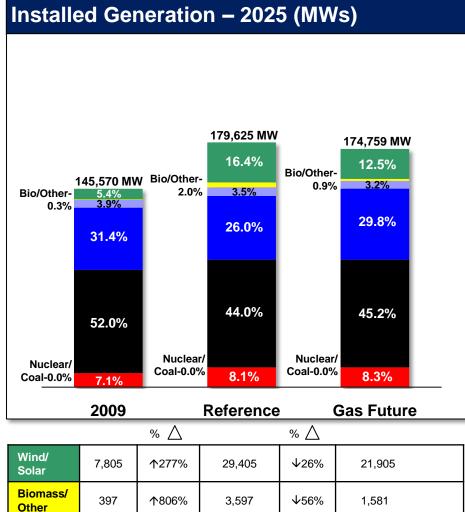
5,609

45,725

75,673

0

10,361


个13%

1€2%

个4%

0%

个40%

6,359

46,745

78,995

0

14,524

√12%

12%

0%

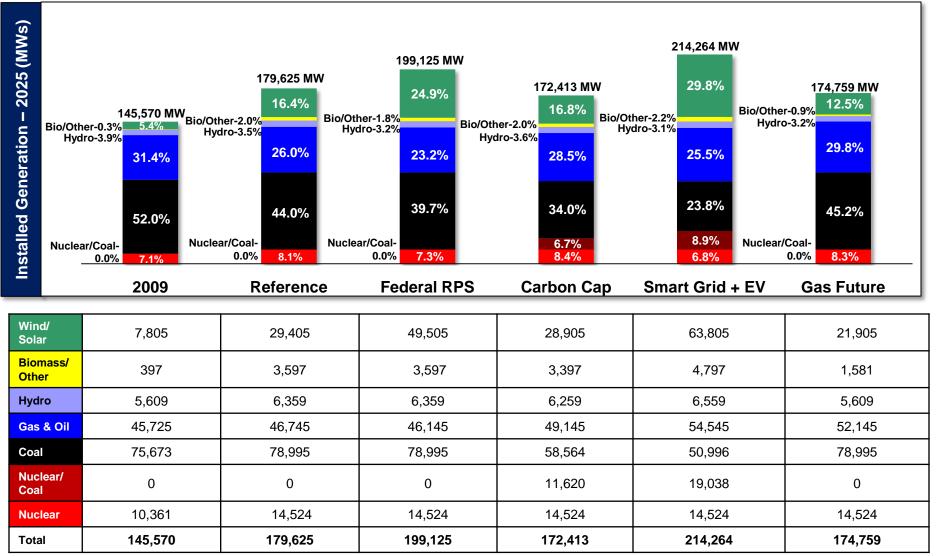
0%

0%

5,609

52,145

78,995


0

14,524

Scenario	Reference	Gas Future	% ∆
Top 3 Fuels (Production)	 Coal Nuclear Wind/Solar 	 Coal Nuclear Wind/Solar 	
Carbon Output in 2025 (tons in Mils.) ¹	498.0M 0.75 tons/MWh	513.4M 0.72 tons/MWh	↑ 3%
Production Cost (Bils.)	\$261	\$298	个 14%
Capital Cost (Bils.) ²	\$99	\$84	√15%
LMP (\$/MWh)	\$21.71	\$55.22	↑ 154%
Retail Cost (¢/KWh)³	9.02¢	8.00¢	√11%

¹2005 Midwest ISO Base CO₂ Output: 535M tons ²Capital Cost includes generation costs only ³Retail Cost (¢/KWh) is in 2010 dollars Note: 15% reserve margins used in scenario Note: 15% wind capacity credit used in scenario

Total Installed Generation Summary

*All values in MWs

