

Potential Effects of Proposed Climate Change Legislation on PJM's Energy Market

Michael E. Nix Senior Strategist, Market Strategy PJM Interconnection Institute for Regulatory Policy Studies December 10, 2009

PJM member companies millions of people served peak load in megawatts 144,644 MWs of generating capacity GWh of annual energy Generation sources Area served Internal/external tie lines

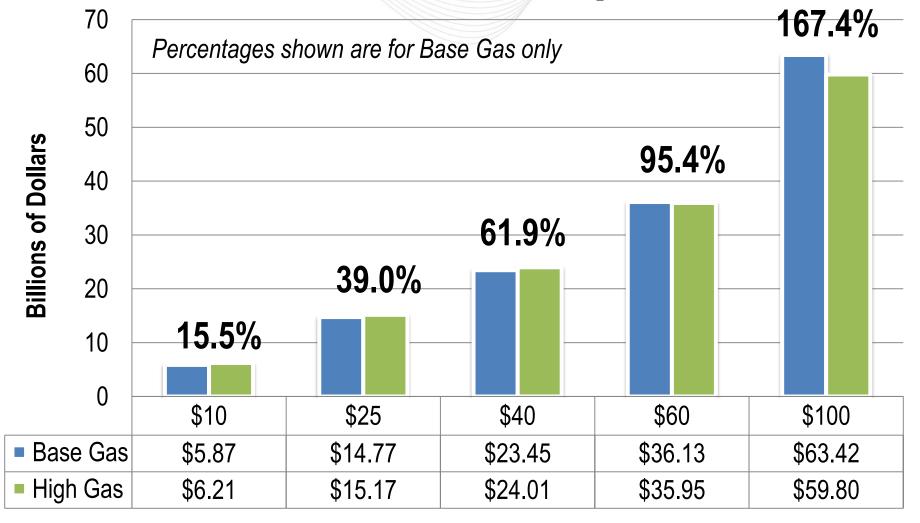
51

Cost of CO₂ Reduction Through Re-Dispatch

Marginal Cost of Abatement (\$/short ton) Re-dispatch from Coal (10 mmBtu/MWh) to Gas Combined Cycle (7 mmBtu/MWh)

	Gas price (\$/mmBtu)			
	Coal Price	\$3.60	\$6.44	\$10.00
Region	(\$/mmBtu)	(9-25-09)	(Base)	(High)
Mid-Atl	\$2.30	\$3.57	\$35.80	\$76.21
ComEd	\$1.54	\$15.89	\$48.13	\$88.53
West	\$1.97	\$8.92	\$41.15	\$81.56
South	\$2.43	\$1.46	\$33.69	\$74.10

Change in Load-Weighted Average LMP

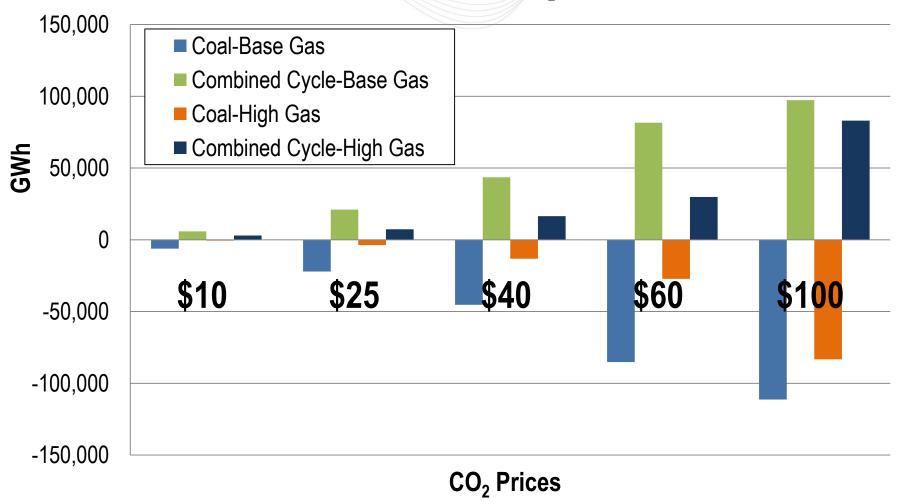


Approximately 75-80% of CO₂ price is transmitted to load-weighted Average LMP.

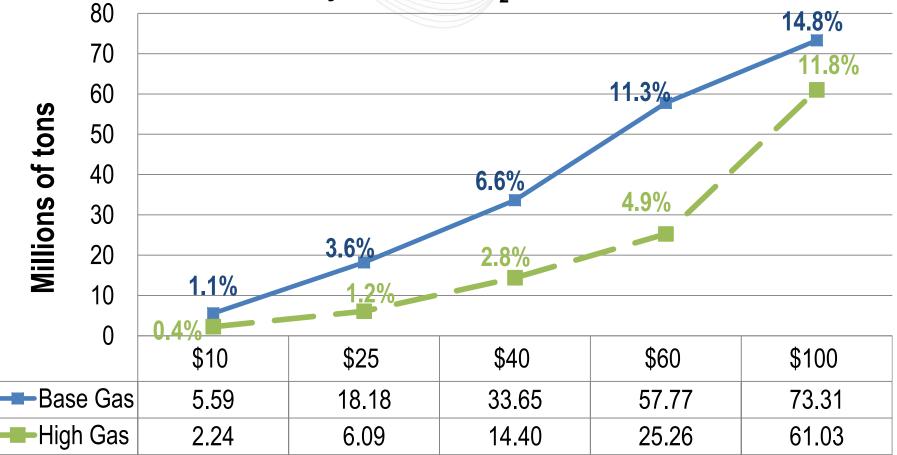
Change in Wholesale Power Costs

Increase in Wholesale Power Costs by Gas Price and CO₂ Price

Potential Consumer Bill Impacts


Increase in Monthly Bill of a Residential Customer Using 750 kWh

Change in Generation Mix


Change in Coal and Combined Cycle Generation by CO₂ Price

Emissions Reductions

Emissions Reductions by Gas and CO₂ Price

Reductions are from the baseline 2013 emissions

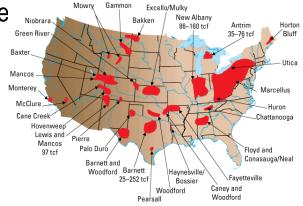
Demand Reductions vs. Wind

Price and Cost Increases Mitigated						
	Loa	15 GW Wind				
	2%	5%	10%			
LMP (\$/MWh)	\$2 - \$4	\$5 - \$9	\$11 - \$17	\$5 - \$5.50		
Wholesale Power Cost	\$3 - \$4 billion	\$6-\$11 billion	\$10-\$18 billion	\$4 - \$4.5 billion		
Consumer Bill (monthly)	\$1 - \$3	\$4 - \$6.50	\$7 - \$12.50	\$3.50 - \$4		

- 15 GW of wind has same impact as somewhere between a 2% and 5% load reduction
- Displaced generation is at a \$0 CO₂ price in the base gas case only.

Generation Displacement and Emissions Reductions Achieved						
	Load Reduction Percentage			15 GW Wind		
	2%	5%	10%			
Coal	6,741 GWh	18,376 GWh	41,972 GWh	26,303 GWh		
Combined Cycle Gas	6,555 GWh	15,685 GWh	28,587 GWh	13,009 GWh		
Additional CO ₂ Reductions (tons)	10-14 million	29-34 million	58-64 million	34-37 million		

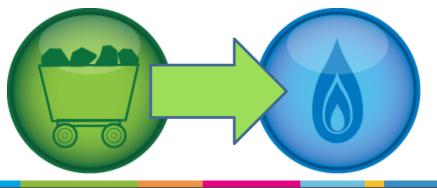
- Approximately the same effect as a 5% reduction in load with regard to emissions impacts gas displaced
- Displaced generation is at a \$0 CO₂ price in the base gas case only.


Conclusions from Whitepaper

- LMP increases by 75-80% of CO₂ price
 - results in increase in customer bills
- Dispatch of gas ahead of coal for large-scale emissions reductions occurs only at
 - Approximately \$40/ton in the base gas case (\$6.44/mmBtu)
 - Approximately \$80/ton in the high gas case (\$10/mmBtu)
- Demand reduction and wind power can reduce emissions and offset increases in LMP, wholesale power costs, and customer bills.

Fuel and Allowance Prices in the Context of Waxman-Markey (H.R. 2454)

- A tight range of CO₂ prices in 2013:
 - \$15-\$20/ton in most likely scenarios
 - $\sim \approx 11$ /ton without any banking or with high availability of offsets
 - \$28/ton if no international offsets
 - ~ \$51/ton with no international offsets and high hurdles for new nuclear and renewable resources
- National average gas prices \$6.20-\$7.30/mmBtu
 - Availability of shale gas production help to drive price
 - Gas demand not appreciably higher either
- National average coal prices \$2/mmBtu
 - Increases in coal transportation costs offset
 by declining coal demand



Marcellus Shale

Implication for CO₂ Impacts in PJM in the Context of Waxman-Markey (H.R. 2454)

- CO₂ prices that cause widespread re-dispatch from coal to gas:
 - National average prices: \$20-\$30/ton
 - Less than \$15/ton east of the Alleghenies
 - \$15-\$20/ton in the West (not including ComEd)
 - Greater emissions reductions at lower CO₂ prices than in PJM whitepaper
- \$11-\$15/MWh increases in LMP on average *IF* CO₂ price LMP relationship same as in whitepaper
 - includes only increase due directly to CO₂ prices, not increased fuel costs
 - can separate out effects from direct CO₂ price and impact on fuel prices
- Whitepaper update in progress

Additional/complementary factors

- Policy Changes from federal legislation
 - Waxman-Markey (ACES)
 - Bingaman (ACELA)
 - Kerry-Boxer emissions caps
- Technology
 - Determined partially by policy and legislation
 - Carbon capture and storage
 - AEP, Wall Street Journal, 12/9/09
 - Nuclear
- Markets
 - CO2/GHG
 - RTO/ISO

Additional considerations

- Offsets
 - Energy Information Administration analysis
 - ICF analysis
- Renewable Portfolio Standards/Electricity Standards
 - Federal v. State
 - Production Tax Credits
 - Renewable Energy Credits
 - Wholesale electricity prices
 - Cap and trade
 - Allowance allocation