

Facilitating Energy Efficiency and Conservation: Non-Volumetric Rate Designs

The Institute for Regulatory Policy Studies Illinois State University Springfield, Illinois

Cynthia J. Marple

May 1, 2008

Natural Gas Utility Costs

Natural Gas Supply Costs

- Volumetric Costs
- 70% of Utility Revenue

Distribution Costs

- Fixed Costs
- 30% of Utility Revenue Includes:
 - ✓ Customer Service
 - ✓ Operations
 - ✓ Maintenance
 - Depreciation
 - ✓ Taxes
 - Return on property used to provide service

U.S. Natural Gas Customer Usage and Investment (Distribution Sector)

15 million new residential customers from 1980 to 2005

\$96 billion in new construction from 1980 to 2005

1980 total residential consumption = 4.7 Tcf

2005 total residential consumption = 4.8 Tcf

U.S. TREND: Declining Use Per Customer

AVERAGE ANNUAL DECLINE IN WEATHER NORMAL GAS USE PER CUSTOMER

* 2004 AGA Energy Analysis: Patterns in Residential Natural Gas Consumption, 1980-2001

Traditional Rate Design

- 19th century rate design
- Volumetric each unit of natural gas is assigned a pro-rata share of distribution costs
- Implies distribution revenue recovery only if customers don't conserve natural gas
 - Increasing natural gas sales is a major objective of traditional rate design
 - Contains a financial disincentive for aggressively promoting energy efficiency and natural gas conservation

Why Non-Volumetric Rate Design?

- High and volatile natural gas prices
- Global climate change
- Energy resource conservation
- Utility sponsored efficiency programs

New Paradigm: Regulatory Goal is Shifting From Building Distribution Infrastructure to Encouraging Efficient Use of Resources

Regulatory and Policy Changes

- 2007 Energy Independence and Security Act December 19, 2007
- 2006 DOE/EPA/NARUC National Action Plan for Energy Efficiency
 - Utility Incentives
 - Innovative Ratemaking
- 2005 Nov NARUC Resolution on Energy Efficiency and Innovative Rate Design
 - Urged utility regulators to consider innovative natural gas rate mechanisms to increase energy conservation and reduce customers' bills.
- 2004 NRDC/AGA Policy Statement
 - PUCs should consider gas utility rate proposals and other innovative programs that remove the disincentives for encouraging conservation.
 - Endorsed by NARUC, the Alliance to Save Energy and ACEEE
- State Legislative Changes
 - New Laws: Connecticut, Minnesota, Missouri, Nevada, New York, South Carolina, and Virginia
 - Pending Legislation: Illinois, New Jersey, Ohio

Types of Non-Volumetric Rates

Revenue Decoupling Weather Normalization (partial decoupling) Rate Stabilization Tariffs Flat Monthly Fee and Variants

- Fixed Monthly Distribution Charge
- Two-Tier Customer Charge
- Straight Fixed Variable (Demand Rate)
- Modified Rate Blocks

43 million customers being served under non-volumetric rates

Revenue Decoupling

- Breaks the link between distribution service cost recovery and energy usage of customers
- Annual adjustments meet pre-established revenue targets but no adjustment for changes in costs
- Symmetrical prevents the utility from increasing revenues by increasing sales
- Additional distribution charges are refunded to customers
- Standard bill components retained:
 - fixed monthly service charge
 - volumetric distribution charge
 - volumetric commodity pass-through charge
- Symmetrical tracking charge added
- Decoupling is NOT incentive regulation there is no reward or bonus for the utility

Decoupling Calculation A Representative Example – Average Usage

\$300,000,000 Annual Distribution Service Cost 1,000,000 Residential Customers 100 Mcf per customer per year

Per Mcf (Volumetric)

- 100,000,000 Mcf/yr -Total System Throughput
- \$3 Distribution Charge/Mcf

Per Customer (Non-volumetric)

- 1,000,000 Residential Customers
- \$300 Distribution Charge/customer

Decoupling Calculation (Cont)

Traditional Rate Design

5% volume reduction

- 95 Mcf/Cust./yr
- <u>x\$3</u> Dist. Chg/Mcf
- \$285 Rev/Cust.
- \$15 Rev Shortfall
- \$15 Loss in Yr 1
- No rate adjustment in Yr 2

Revenue Decoupling

5% volume reduction

- 95 Mcf/Cust./yr
- <u>x\$3</u> Dist. Chg/Mcf
- \$285 Rev/Cust. in Yr 1
- \$15 Rev Shortfall
- 100 Mcf/Cust./Yr
- x\$3.15/Dist. Chg/Mcf
- \$315 Rev/Cust. in Yr 2
- \$15 Rev Adjustment in Yr 2

NATURAL GAS REVENUE DECOUPLING AS OF MARCH 2008

Decoupling Tariffs (as of March 2008)

APPROVED - 13 States

- 1. AR Arkansas Oklahoma
- 2. AR Arkansas Western
- 3. AR CenterPoint Energy
- 4. CO PSC of Colorado
- 5. CA Pacific Gas and Electric
- 6. CA San Diego Gas and Elec.
- 7. CA Southern California Gas
- 8. CA Southwest Gas
- 9 &10 IL Integrys Peoples Gas/North Shore Gas
- 11. IN Citizens Gas & Coke
- 12&13 IN Vectren Indiana/ Southern Indiana
- 14. MD Baltimore Gas and Elec.
- 15. MD Washington Gas
- 16. NJ NJ Natural Gas
- 17. NJ South Jersey Gas
- 18. NY Consolidated Edison
- 19. NY National Fuel Gas Dist.
- 20. OH Vectren Ohio
- 21. OR Cascade Natural Gas
- 22. OR NW Natural Gas
- 23. NC Piedmont Natural Gas
- 24. UT Questar Gas
- 25. WA Avista
- 26. WA Cascade Natural Gas

PENDING - 5 Additional States

- 1. AZ Southwest Gas
- 2. AZ UNS Gas
- DE Chesapeake Utilities
- 4. IL CILCO
- 5. IL CIPS
- 6. IL Illinois Power
- 7. IL Nicor
- 8. KS Atmos Energy
- 9. NC PS Co. of North Carolina
- 10. MA Generic Proceeding
- 11. OH East Ohio Gas
- 12. OH Duke Energy Ohio
- 13. WA NW Natural Gas

5 Million Residential Customers

* Of 63 Million Customers in U.S. *

American Gas Association

Does Decoupling Work? The California Experience

- California began natural gas decoupling in 1978 and electric decoupling in 1982
- Since 1974, California has held its per capita energy consumption essentially constant, while energy use per person for the United States overall has jumped 50 percent.

Decoupling: The Oregon Experience

PUC-Required Study* Found Decoupling Tariff:

- An effective means of reducing NW Natural's disincentive to promote energy efficiency
- Changed company focus from marketing to promoting energy efficiency
- Resulted in no deterioration of customer service
 - No customer complaints received regarding decoupling tariff
- Improved NW Natural's ability to recover fixed costs
- Did not shift risk to customers

Oregon now has the highest share of high-efficiency furnaces in the nation (as a percentage of new furnace sales)

* Analysis conducted by Christensen Associates (2005)

15

Flat Monthly Fee Rate Design Same Outcomes as Decoupling

Approved

- GA Atlanta Gas Light Individually determined monthly demand charge (Straight Fixed Variable)
- MO Missouri Gas Energy \$24.69 monthly charge; also other Missouri utilities
- MO Laclede Gas Modified rate blocks
- ND Xcel Energy Flat fee of \$18.48 per month
- OK ONEOK Two-tier plan Offers customers a choice

Pending

- GA Atmos Energy Flat fee
- OH Columbia Gas Flat fee
- WI Wisconsin Power and Light Flat fee

Four million customers served under this rate design

American Gas Association

What's In Flat Monthly Fee Rate Design for the Customer?

- No overpayment or underpayment of monthly distribution charge
- Improved bill stability compared to both traditional rate design and decoupling
- Pricing similar to other consumer services
 - telephone, cable, and internet
- Bills are simpler and easier to understand
- Bill variability due to natural gas energy prices is transparent to the customer
 - Only price signal that is meaningful

Rate Stabilization Mechanism

- Decouples utility rates from natural gas throughput by adjusting rates to meet pre-established and authorized rate targets
- Regulatory review utilizes an expedited revenue study, as well as an expedited cost study
- NOT incentive regulation -- no reward is granted for meeting performance targets
- Expedites utility infrastructure investment between rate cases
- Symmetrical shares efficiency savings with customers
- FERC-regulated electric transmission companies use RS

Streamlines ratemaking process and costs of utility regulation

Rate Stabilization Tariffs

(as of March 2008)

APPROVED

- 1. AL Alabama Gas
- 2. AL Mobile Gas
- 3. MS Atmos Energy
- 4. MS CenterPoint Energy
- 5. LA Atmos Energy
- 6. LA CenterPoint Energy
- 7. LA Entergy
- 8. OK CenterPoint Energy
- 9. SC Piedmont Natural Gas
- 10. SC South Carolina E&G
- 11. TX CenterPoint Energy

3 Million Residential Customers

* Of 63 Million Customers in U.S. *

PENDING

1. TX – Atmos Energy

What's In Non-Volumetric Rates for the Customer?

- Bill stability in only area of costs that the utility controls
- Lower overall bills from natural gas conservation
- **NO** additional costs to the customer beyond those approved in the rate case
- Possible reduction of commodity prices as lower demand leads to lower prices
 - 2003 ACEEE study projected 20% decline in gas prices from reduction in natural gas consumption of 1.9% and electricity consumption of 2.2%

STATES WITH NON-VOLUMETRIC RATE DESIGNS FOR NATURAL GAS (AS OF MARCH 2008)

For further information, contact

Cynthia Marple Director, Rates and Regulatory Affairs American Gas Association 400 N. Capitol St., NW Washington, D.C. 20001 (202) 824-7228

cmarple@aga.org

