The Benefits of Dynamic Pricing of Default Electricity Service

Bernie Neenan

UtiliPoint International

<u>Prepared</u> for

Assessing the Potential for Demand Response Programs Institute for Regulatory Policy Studies May 12, 2006

Integrating DR into Electricity Markets

Sour THE BENEfits of Demand Response in Electricity Markets and Recommendations for Achieving Them. Feb. 2006,. USDOE

Dynamic Pricing – It's About Time

Dynamic Pricing – It's About Time (2)

Benefits of Dynamic Pricing

Participant Savings

- Savings to customers that take default service consist of two components:
 - Avoid paying the hedged service risk premium
 - Savings from demand response behaviors
 - Savings from shifting away from high prices
 - Consumer surplus from expanded load at low prices
- Benefits to all Electricity Consumers
 - ▲ Lower LMPS reduce bilateral market prices:
 - Lower competitive prices
 - Lower default service prices

Benefits of Dynamic Pricing (2)

Peak Load Reduction – Two Measures

- Maximum single hour of demand response (MW) on annual basis
- Average level of demand response (MW) coincident with June, July, August and September monthly zonal maximum demands
- <u>Market Performance benefits</u>
 - Resource Savings Improvement in the efficient allocation of societal resources

Benefits of Dynamic Pricing (3)

• Other Benefits

- Improved reliability
- Market power mitigation
- Reduced emissions
- More choices
- Portfolio risk reduction
- Vertical market development (enabling technologies)

These are hard to quantify, redundant or both

Benefits of Dynamic Pricing of Default Service in New England Service

- Benefits of alternative default service pricing
- Targeted to New England customers over 500 kW
- Customers distinguished by:
 - Business activity
 - Load size and profile
 - Price response (from NGrid Study)
- Scenarios characterize market supply as:
 - Status Quo (2004-5)
 - High (more high prices more often)
 - Extreme (even more higher prices more frequent)

Alternative Designs Evaluated

Block and Swing

Price FX Model

Maximum Non-Coincident Peak Load Reduction – New England

12

Average *Coincident* Monthly Peak Load Reduction – New England

Benefits – Five Year Outlook – New England (33% of customers over 500 kW price responsive)

Some Observations

- Autonomous price response is the desired end result
 - Don't expect bloom naturally
 - Flat default service engenders price inelasticity
 - Dynamic default service fosters the development of price response
- Load bidding as a resource is poor second best solution
- Because reliability is a social good, ISO ICAP, emergency and ancillary service programs

I welcome your comments and criticisms: bneenan@utilipoint.com

