

DYNEGY

CHALLENGE

INNOVATION

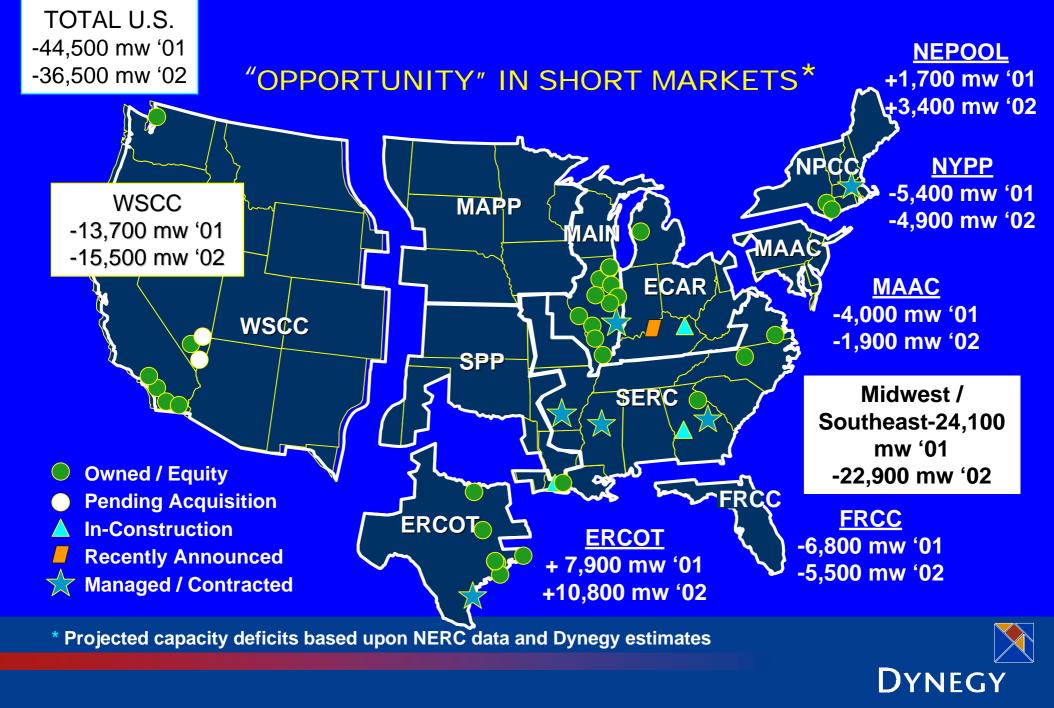
PERFORMANCE

ELECTRICITY RESTRUCTURING: WHAT WENT WRONG/WHAT WORKED RIGHT?

Mary J. Doyle
Senior Director of Regulatory Policy

DYNEGY INC.

ENERGY CONVERGENCE V H O L E S A L E R E T A I L TRANSMISSION & DISTRIBUTION


COMMUNICATIONS

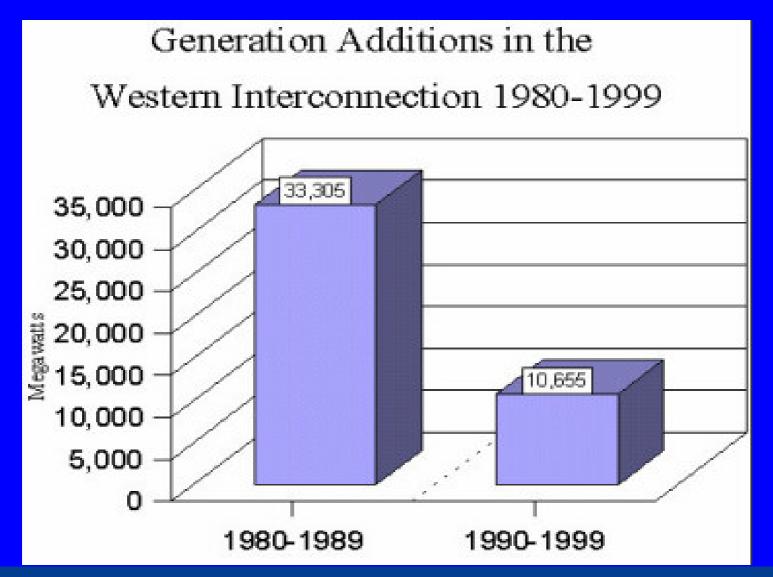
MIDSTREAM

- \$29 Billion Revenues *
- \$21 Billion Assets *
- \$16 Billion Equity Market Value
- **◆** 5,900+ Employees

- 19,100 MW Generation Control
- 11 Bcf/d Natural Gas Sales *
- 138 MM MWh Produced & Sold *
- 565 MBbls/d Liquids Sales *

California Basics: What Did Happen?

- Supply/Demand imbalance
- Market structure flaws
 - Resort to spot/real-time markets for entire load
 - Price caps and other machinations
- Little new supply
- Growth and drought in West



California Growth Statistics 1990-99

- Economic and Demographic
 - Employment: +12%
 - Population: +16%
 - State Economy: +45%
 - Electronics and Instruments
 - Industry: +62%
 - CommunicationsIndustry: + 80%

- Energy
 - Nat. Gas Use +6%
 - Electricity Use +9%
 - Peak Demand +15%
 - Peak Demand in SiliconValley +33%
 - Power GenerationCapacity +2%
- ◆Economic data from 1990-1998 actual, with 1998-1999 extrapolated using 1997-1998 growth rate (Source: CA Department of Finance, Economic Research Unit)
- ◆Electricity use from 1990-1999 (Source: CEC)
- ◆Peak Demand from 1990-1999 (Source: CEC)
- Gas use from 1990-1997 actual (Source: EIA); 19; Silicon Valley Growth from Los Angeles Times, 1/8/00.97-1999 assumes average growth rate from 1990-1998
- Generation Capacity growth from 1990-2000 (Source: 1990: CEC Electricity Report and appendices; 2000: CEC Power database)

LESSONS LEARNED - Dynegy's Perspective

- Do not confuse bad results with bad acts
 - prices increase when demand increases and supply does not
 - prices increase when production costs increase
 - since electricity cannot be stored, supply and demand must be balanced in real-time
 - electricity is produced in many different ways; the cost structure for electric production varies considerably

LESSONS LEARNED - Dynegy's Perspective

- Markets work best with many buyers and many sellers
 - California demand is dominated by a few very large players (whose decisions were affected by the goal of stranded cost recovery)
 - the difficulty in developing and siting new projects in California constrained the supply side of the market
 - the centralized nature of the California market did not encourage innovation

What to Do?

- Short-term -
 - Get as much energy out of the real-time market as possible
 - Increase supply however possible
 - Decrease demand
 - Raise consumer prices (9% demand reduction when SDG&E raised prices = 4,000+ MW statewide)
 - Revert to 2000 Emissions Limits
 - Fix financial uncertainty problem
 - Develop a viable means of returning utilities to solvency
 - Moderate political rhetoric

What to Do?

- Long-term
 - Encourage new supply
 - Infrastructure improvements
 - Gas delivery in California
 - Transmission Path 15
 - Generation siting
 - Restore credit and credibility to markets
 - Demand response
 - Wholesale market improvements
 - Regional RTOs
 - Regulatory certainty

KEY ISSUES IN RTO DEVELOPMENT

- Eliminate Vertical Market Power
- Ensure Comparability
- Provide fair & open Interconnection Procedures
- Market-driven Congestion Pricing
- Mitigate Seams Issues

Vertical Market Power

Why RTOs:

- FERC concluded that:
 - "opportunities for undue discrimination continue to exist that may not be remedied by functional unbundling"
 - RTOs will remedy this impediment to competitive markets.

Manifestations

- Lack of access to transmission, curtailments, TLRs
- Discriminatory interconnection procedures
- Lack of trust that transmission customers are being treated fairly

Comparability

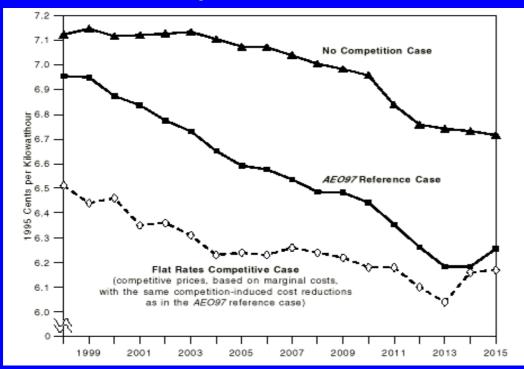
- Follow the Order No. 636 gas model
- RTOs alone do not "put all uses on the tariff"
- FERC Staff Report: In order to improve the incentives for open access transmission, Commission should require native load to be served under the same tariff provisions as all other transmission services

Interconnection Issues

- Multiple benefits of merchant generation
 - enhances competition
 - promotes diversity in products and services
 - mitigates market power of incumbent utilities
 - contributes to overall market liquidity
- RTOs should be the doorkeeper of fair, open and consistent interconnection procedures

Congestion Pricing Principles

- CM proposals should be designed to satisfy the needs of the market, not be the "market"
- CM proposal should be judged whether they satisfy the needs of customers, including:
 - liquidity
 - certainty of price
 - certainty of delivery
 - transmission flexibility



Function 8 - Interregional Coordination

- Heightened recognition of regional markets
- Multiple uncoordinated efforts to solve seams issues
- Need for FERC to take a very active role in accomplishing Function 8
- Investments are being made; stranded costs are accumulating

The Premise: Efficiency Gains from Competition Reduce Retail Prices

U.S. Energy Information Administration projections (a penny is \$34 billion per year):

Higher price is no competition.

Middle price is competition with stranded costs allowed.

Lower price is competition with no stranded costs.

Significant Long-Term Benefits

Retail Market Conundrum # 1

Generation
Supply-Demand
Balance

```
"Supply Deficit" ←
↓

Marginal Cost > Embedded Cost
↓

Can't Beat Shopping Credit
↓

No Competition
```


Retail Market Conundrum # 2

 $\begin{array}{c} & & \text{Utility} \\ & & \text{Generation} \\ & & & \rightarrow \text{Utility Sells} \\ \downarrow & & & \downarrow \\ \\ \text{Utility Acts Like} & & \text{Utility Can't Supply} \\ \\ \text{Integrated Monopoly*} & & \text{at Embedded Cost} \\ \downarrow & & & \downarrow \\ \\ \text{No Competition} & & & \text{Price Volatility**} \end{array}$

- * At least until wholesale price exceeds shopping credit.
- ** At least at wholesale level (load serving entity can hedge).

What's Right

- Regional Markets are developing
- New Supply is being added
- Price signals are being sent
- Promising innovations in the field of renewables, distributed generation etc.
- Increase in the number and sophistication of market players
- Need to remember Restructuring does not happen overnight

